CHAPTER NO. 21(NUCLEAR PHYSICS)

Question 21.1:- Find the mass defect and binding energy of the tritium, if the atomic mass of the tritium is 3.016049 u .

Solution:- Mass of tritium nucleus $=m_{\text {nucleus }}=3.016049 \mathrm{u}$
Charge number of tritium $=Z=1$
Mass number of tritium $=\mathrm{A}=3$
Mass defect $=\Delta \mathrm{m}=\mathrm{Z} \mathrm{m}_{\mathrm{P}}+(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}-\mathrm{m}_{\text {nucleus }}$
$\Delta \mathrm{m}=\mathrm{m}_{\mathrm{p}}+2 \mathrm{~m}_{\mathrm{n}}-\mathrm{m}_{\text {nucleus }}=(1.007276 \mathrm{u})+2(1.008665 \mathrm{u})-3.016049 \mathrm{u}$
$\Delta \mathrm{m}=0.00855 \mathrm{u}$
Binding energy $=$ B.E. $=\Delta \mathrm{mc}^{2}$
We know that $1 \mathrm{u}=931 \mathrm{MeV}$
B.E. $=(0.00855)(931 \mathrm{MeV})$

B.E. $=7.97 \mathrm{MeV}$

Question 21.2:- The half-life of $38 \mathrm{Sr}^{91}$ is 9.70 hours. Find its decay constant.
Solution:- Half-life $=\mathrm{T}_{1 / 2}=9.70$ hours $=9.70 \times 3600 \mathrm{~s}=3.492 \times 10^{4} \mathrm{~s}$
Decay constant $=\lambda=0.693 / T_{1 / 2}=0.693 /\left(3.492 \times 10^{4}\right)$
$\lambda=0.199 \times 10^{-4} \mathrm{~s}^{-1}$
$\lambda=1.99 \times 10^{-5} \mathrm{~s}^{-1}$
Question 21.3:- The element $91 \mathrm{~Pa}^{234}$ is unstable and decays by β-emission with a half-life 6.66 hours. State the nuclear reaction and the daughter nuclei.

Solution:- We know that charge number is increased by one and mass number remains the same in beta decay.

$$
{ }_{91} \mathrm{~Pa}^{234} \rightarrow{ }_{92} \mathrm{Y}^{234}+{ }_{-1} \mathrm{e}^{0}
$$

Daughter nuclide $=92 \mathrm{U}^{234}$

Question 21.4:- Find the energy associated with the following reaction: (Mass of $1 \mathrm{H}^{1}=$ 1.00784u)

$$
{ }_{7} \mathrm{~N}^{14}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{8} \mathrm{O}^{17}+{ }_{1} \mathrm{H}^{1}
$$

What does negative sign indicate?
Solution:- Mass difference $=$ Mass of reactants - Mass of products
$\Delta m=\left[\left(\right.\right.$ Mass of ${ }_{7} \mathrm{~N}^{14}+$ Mass of $\left.\left.{ }_{2} \mathrm{He}^{4}\right)\right]-\left[\left(\right.\right.$ Mass of $\left.{ }_{8} \mathrm{O}^{17}\right)+\left(\right.$ Mass of $\left.\left.{ }_{1} \mathrm{H}^{1}\right)\right]$
$\Delta \mathrm{m}=[14.0031 \mathrm{u}+4.00264 \mathrm{u}]-[16.991 \mathrm{u}+1.00784 \mathrm{u}]=-0.0012 \mathrm{u}$
$\mathrm{Q}=\Delta \mathrm{m} \mathrm{c}^{2}=(-0.0012)(931 \mathrm{MeV})$
$\mathrm{Q}=-1.12 \mathrm{MeV}$
The negative sign indicates that 1.12 MeV energy is required to initiate this reaction.

Question 21.5:- Find the energy associated with the following reaction: (Mass of $\mathrm{C}^{14}=$ 14.0077u)

$$
{ }_{6} \mathrm{C}^{14} \rightarrow{ }_{7} \mathrm{~N}^{14}+{ }_{-1} \mathrm{e}^{0}
$$

Solution:- Mass difference $=$ Mass of reactants - Mass of products
$\Delta \mathrm{m}=\left[\left(\right.\right.$ Mass of $\left.\left.{ }_{6} \mathrm{C}^{14}\right)\right]-\left[\left(\right.\right.$ Mass of $\left.7 \mathrm{~N}^{14}\right)+\left(\right.$ Mass of $\left.\left.-\mathrm{e}^{0}\right)\right]$
$\Delta \mathrm{m}=[14.0077 \mathrm{u}]-[14.0031 \mathrm{u}+0.00055 \mathrm{u}]=0.00405 \mathrm{u}$
$\mathrm{Q}=\Delta \mathrm{m} \mathrm{c}^{2}=(0.00405)(931 \mathrm{MeV})$
$\mathrm{Q}=3.77 \mathrm{MeV}$
Question 21.6:- If $922 \mathrm{U}^{233}$ decays twice by α-emission, what is the resulting isotope?
Solution:- We know that mass number decreases by 4 and charge number decreases by 2 as a result of α-emission. The decay of ${ }_{92} \mathrm{U}^{233}$ by alpha emission twice is shown in the following:-

$$
{ }_{92} \mathrm{U}^{233} \rightarrow{ }_{90} \mathrm{Th}^{229}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{88} \mathrm{Ra}^{225}+{ }_{2} \mathrm{He}^{4}
$$

Resulting isotope $={ }_{88} \mathrm{Ra}^{225}$
\therefore The answer in book ${ }_{88} \mathrm{Rn}^{225}$ is wrong
Question 21.7:- Calculate the energy (in MeV) released in the following fusion reaction:

$$
{ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{3} \rightarrow{ }_{2} \mathrm{He}^{4}+\mathrm{on}^{1}
$$

Solution:- Mass difference $=$ Mass of reactants - Mass of products
$\Delta \mathrm{m}=\left[\left(\right.\right.$ Mass of $1 \mathrm{H}^{2}+$ Mass of $\left.\left.1 \mathrm{H}^{3}\right)\right]-\left[\left(\right.\right.$ Mass of $\left.2 \mathrm{He}^{4}\right)+\left(\right.$ Mass of on $\left.\left.{ }^{1}\right)\right]$
$\Delta \mathrm{m}=[2.014102 \mathrm{u}+3.01605 \mathrm{u}]-[4.002603 \mathrm{u}+1.008665 \mathrm{u}]=0.018884 \mathrm{u}$
$\mathrm{Q}=\Delta \mathrm{mc}^{2}=(0.018884)(931 \mathrm{MeV})$

$\mathrm{Q}=17.6 \mathrm{MeV}$

Question 21.8:- A sheet of lead 5.0 mm thick reduces the intensity of a beam of γ-rays by a factor 0.4. Find half value thickness of lead sheet which will reduce the intensity to the half of its initial value.
Solution:- Thickness of lead sheet $=\mathrm{x}_{1}=5 \mathrm{~mm}=0.005 \mathrm{~m}$
Intensity reduction factor $=\frac{I}{I_{o}}=0.4$
We know that intensity of radiation decreases in a solid as $\mathbf{I}=\mathbf{I}_{\mathbf{0}} \mathbf{e}^{-\mu \mathbf{x}}$ which can be rearranged as $\frac{I}{I_{o}}=\mathrm{e}^{-\mu \mathrm{x}}$
At $\mathrm{x}=\mathrm{x}_{1}, \frac{I}{I_{o}}=0.4$
$0.4=e^{-\mu x_{1}}$
Take natural logarithm on both sides
$\ln (0.4)=\ln \left(e^{-\mu x_{1}}\right)$
$-0.916=-\mu \mathrm{x}_{1}$
$\mu=0.916 / 0.005$
$\mu=183.2 \mathrm{~m}^{-1}$
Now, we want find the depth (value of x) for which intensity reduction factor is 0.5 i.e. $\frac{I}{I_{o}}=0.5$ We will use the relation $\frac{I}{I_{o}}=\mathrm{e}^{-\mu \mathrm{x}}$
Put value of $\frac{I}{I_{o}}=0.5$ and $\mu=183.2 \mathrm{~m}^{-1}$
$0.5=\mathrm{e}^{-183.2 \mathrm{x}}$
Take natural logarithm on both sides
$\ln (0.5)=\ln \left(\mathrm{e}^{-183.2 \mathrm{x}}\right)$
$-0.693=-183.2 x$
$\mathrm{x}=0.693 / 183.2=0.00378 \mathrm{~m}$
$\mathrm{x}=3.78 \mathrm{~mm}$
Question 21.9:- Radiation from a point source obeys inverse square law. If the count rate at a distance of 1.0 m from Geiger counter is 360 counts per minute, what will be its count rate at 3.0 m from the source?

Solution:- Initial distance $=\mathrm{r}_{1}=1.0 \mathrm{~m}$
Initial count rate $=R_{1}=360$ counts per minute
Final distance $=r_{2}=3.0 \mathrm{~m}$
Final count rate $=R_{2}$
Inverse square law states that $\mathrm{R} \alpha \frac{1}{r^{2}}$
So we can say that

$$
\frac{R_{2}}{R_{1}}=\frac{r_{1}^{2}}{r_{2}^{2}}
$$

$\mathrm{R}_{2}=\mathrm{R}_{1}\left(\frac{r_{1}^{2}}{r_{2}^{2}}\right)=(360)\left(\frac{1^{2}}{3^{2}}\right)=(360)(1 / 9)$
$\mathrm{R}_{2}=40$ counts per minute
Question 21.10:- A 75 kg person receives a whole body radiation dose of 24 m -rad, delivered by α-particles for which RBE factor is 12 . Calculate (a) the absorbed energy in joules, and (b) the equivalent does in rem.
Solution:- Mass of the person $=\mathrm{m}=75 \mathrm{~kg}$
Absorbed dose $=\mathrm{D}=24 \mathrm{~m}-\mathrm{rad}=24 \times 10^{-3} \mathrm{rad}$
We know that $1 \mathrm{rad}=0.01 \mathrm{~Gy}$
$\mathrm{D}=24 \times 10^{-3} \times 10^{-2} \mathrm{~Gy}=24 \times 10^{-5} \mathrm{~Gy}$
$\mathrm{RBE}=12$
(a) $\mathrm{D}=\mathrm{E} / \mathrm{m}$
$\mathrm{E}=\mathrm{D} \times \mathrm{m}=24 \times 10^{-5} \times 75$
$\mathrm{E}=1800 \times 10^{-5} \mathrm{~J}$
$\mathrm{E}=18 \mathrm{~mJ}$
(b) $D_{e}=D \times R B E=24 \times 10^{-5} \times 12$
$\mathrm{D}_{\mathrm{e}}=288 \times 10^{-5} \mathrm{~Sv}$
We know that $1 \mathrm{~Sv}=100$ rem
$D_{e}=288 \times 10^{-5} \times 100$ rem
$D_{e}=288 \times 10^{-3} \mathrm{rem}=0.288 \mathrm{rem}$
$\underline{D}_{\mathrm{e}}=0.29 \mathrm{rem}$

For Your information

Some atomic masses

Particle	Mass (u)
e	0.00055
n	1.008665
${ }^{\mathrm{H}} \mathrm{H}$	1.007276
${ }^{2} \mathrm{H}$	2.014102
${ }^{3} \mathrm{H}$	3.01605
${ }^{\mathrm{H}} \mathrm{He}$	3.01603
${ }^{4} \mathrm{He}$	4.002603
${ }^{\mathrm{K}} \mathrm{Li}$	7.016004
${ }^{13} \mathrm{Be}$	10.013534
${ }^{4} \mathrm{~N}$	14.0031
${ }^{7} \mathrm{O}$	16.9991

