CHAPTER NO. 19(MODERN PHYSICS)

Question 19.1:- A particle called the pion lives on the average only about $2.6 \times 10^{-8} \mathrm{~s}$ when at rest in the laboratory. It then changes into another form. How long would such a particle live when shooting through a space at 0.95 c ?

Solution:- Lift time of pion at rest $=\mathrm{t}_{0}=2.6 \times 10^{-8} \mathrm{~s}$
Speed of pion through space $=v=0.95 \mathrm{c}$
Life time of pion during motion $=\mathrm{t}$
Special theory of relativity relation about time dilation is $\mathrm{t}=\frac{t_{o}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$\mathrm{v}=0.95 \mathrm{c}$
$\frac{v}{c}=0.95$
$\frac{v^{2}}{c^{2}}=0.90$
Put value of t_{0} and $\frac{v^{2}}{c^{2}}$ in the equation to find dilated life time of pion
$\mathrm{t}=\frac{2.6 \times 10^{-8}}{\sqrt{1-0.90}}$
$\mathrm{t}=\left(2.6 \times 10^{-8}\right) /(0.32)$
$\mathrm{t}=8.3 \times 10^{-8} \mathrm{~s}$
Question 19.2:- what is the mass of 70 Kg man in a space rocket travelling at 0.8 c from us as measured from earth?
Solution:- Rest mass of the person $=\mathrm{m}_{0}=70 \mathrm{~kg}$
Speed of the rocket $=\mathrm{v}=0.8 \mathrm{c}$
Mass during motion $=\mathrm{m}$
Special theory of relativity relation about mass variation is $\mathrm{m}=\frac{m_{o}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$\mathrm{v}=0.8 \mathrm{c}$
$\frac{v}{c}=0.8$
$\frac{v^{2}}{c^{2}}=0.64$
Put value of m_{0} and $\frac{v^{2}}{c^{2}}$ in the equation to find mass of person
$\mathrm{m}=\frac{70}{\sqrt{1-0.64}}$
$\mathrm{m}=(70) /(0.6)$
$\mathrm{m}=116.7 \mathrm{~kg}$
Question 19.3:- Find the energy of photon in (a) Radio-wave of wavelength 100 m (b) Green light of wavelength 50 nm (c) X-ray with wavelength 0.2 nm .

Solution:- (a) Wavelength of radiowaves $=\lambda=100 \mathrm{~m}$
$\mathrm{E}=\frac{h c}{\lambda}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{100}=\frac{1.989 \times 10^{-25}}{100}=1.989 \times 10^{-27} \mathrm{~J}$
$\mathrm{E}=\frac{1.989 \times 10^{-27}}{1.6 \times 10^{-19}} \mathrm{eV}$
$\mathrm{E}=1.24 \times 10^{-8} \mathrm{eV}$
(b) Wavelength of green light $=\lambda=550 \mathrm{~nm}=550 \times 10^{-9} \mathrm{~m}=5.50 \times 10^{-7} \mathrm{~m}$
$\mathrm{E}=\frac{h c}{\lambda}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{5.50 \times 10^{-7}}=\frac{1.989 \times 10^{-25}}{5.50 \times 10^{-7}}=3.62 \times 10^{-19} \mathrm{~J}$
$E=\frac{3.62 \times 10^{-19}}{1.6 \times 10^{-19}} \mathrm{eV}$
$\mathrm{E}=2.25 \mathrm{eV}$
(c) Wavelength of x-ray $=\lambda=0.2 \mathrm{~nm}=0.2 \times 10^{-9} \mathrm{~m}=2.0 \times 10^{-10} \mathrm{~m}$
$\mathrm{E}=\frac{h c}{\lambda}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{2.0 \times 10^{-10}}=\frac{1.989 \times 10^{-25}}{2.0 \times 10^{-10}}=9.945 \times 10^{-16} \mathrm{~J}$
$\mathrm{E}=\frac{9.945 \times 10^{-16}}{1.6 \times 10^{-19}} \mathrm{eV}=6.2 \times 10^{3} \mathrm{eV}$
$\mathrm{E}=6200 \mathrm{eV}$
Question 19.4:- Yellow light of 577 nm wavelength is incident on a cesium surface. The stopping value is found to be 0.25 V . Find (a) maximum K.E of photoelectrons (b) the work function of cesium.

Solution:- Wavelength of yellow light $=\lambda=577 \mathrm{~nm}=577 \times 10^{-9} \mathrm{~m}=5.77 \times 10^{-7} \mathrm{~m}$
Stopping potential $=\mathrm{V}_{\mathrm{o}}=0.25 \mathrm{~V}$
(a) Maximum kinetic energy of photoelectrons $=$ K.E.max $=V_{o} \mathrm{e}=(0.25)\left(1.6 \times 10^{-19}\right)$
K.E.max $=0.4 \times 10^{-19} \mathrm{~J}$
K.E. $\max =4 \times 10^{-20} \mathrm{I}$
(b) Work function of metal $=\phi=\mathrm{E}-\mathrm{K} \cdot \mathrm{E} \cdot \max =\frac{h c}{\lambda}-\mathrm{K} \cdot \mathrm{E} \cdot \max =\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{5.77 \times 10^{-7}}-\left(4 \times 10^{-20}\right)$
$\phi=\left(3.45 \times 10^{-19}\right)-\left(4 \times 10^{-20}\right)=3.05 \times 10^{-19} \mathrm{~J}$
$\phi=\frac{3.05 \times 10^{-19}}{1.6 \times 10^{-19}} \mathrm{eV}$
$\phi=1.91 \mathrm{eV}$
Question 19.5:- X-ray of wavelength 22 pm are scattered from a carbon target. The scattered radiation being viewed at 85° to the incident beam. What is Compton shift?
Solution:- Wavelength of x -rays $=\lambda=22 \mathrm{pm}=22 \times 10^{-12} \mathrm{~m}$
Angle of scattering $=\theta=85^{\circ}$
Compton shift $=\Delta \lambda=\frac{h}{m_{o} c}(1-\cos \theta)$
$\Delta \lambda=\frac{\left(6.63 \times 10^{-34}\right)}{\left(9.1 \times 10^{-31}\right)\left(3 \times 10^{8}\right)}\left(1-\cos 85^{\circ}\right)=\left(2.43 \times 10^{-12}\right)(1-0.09)$
$\Delta \lambda=2.2 \times 10^{-12} \mathrm{~m}$

$\Delta \lambda=2.2 \mathrm{pm}$

Question 19.6:- A 90 keV X-ray photon is fired at a carbon target and Compton scattering occurs. Find the wavelength of the incident photon and wavelength of the scattered photon for scattering angle (a) 30° (b) 60°.
Solution:- Energy of x-ray photon $=\mathrm{E}=90 \mathrm{keV}=90 \times 10^{3} \mathrm{eV}=90 \times 10^{3} \times 1.6 \times 10^{-19} \mathrm{~J}$
$\mathrm{E}=1.44 \times 10^{-14} \mathrm{~J}$
Wavelength of incident beam $=\lambda$
$\mathrm{E}=\frac{h c}{\lambda}$
$\lambda=\frac{h c}{E}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{1.44 \times 10^{-14}}=\frac{1.989 \times 10^{-25}}{1.44 \times 10^{-14}}=1.38 \times 10^{-11} \mathrm{~m}$
$\lambda=13.8 \mathrm{pm}$
(a) Scattering angle $=\theta=30^{\circ}$

Compton shift $=\Delta \lambda=\lambda^{\prime}-\lambda=\frac{h}{m_{o} c}(1-\cos \theta)$
$\lambda^{\prime}=\lambda+\frac{h}{m_{o} c}(1-\cos \theta)=\left(13.8 \times 10^{-12}\right)+\frac{\left(6.63 \times 10^{-34}\right)}{\left(9.1 \times 10^{-31}\right)\left(3 \times 10^{8}\right)}\left(1-\cos 30^{\circ}\right)$
$\lambda^{\prime}=\left(13.8 \times 10^{-12}\right)+\left[\left(2.43 \times 10^{-12}\right)(1-0.866)\right]$
$\lambda^{\prime}=\left(13.8 \times 10^{-12}\right)+\left(0.3 \times 10^{-12}\right)$
$\lambda^{\prime}=14.1 \times 10^{-12} \mathrm{~m}$
$\lambda^{\prime}=14.1 \mathrm{pm}$
(a) Scattering angle $=\theta=60^{\circ}$

Compton shift $=\Delta \lambda=\lambda^{\prime}-\lambda=\frac{h}{m_{o} c}(1-\cos \theta)$
$\lambda^{\prime}=\lambda+\frac{h}{m_{o} c}(1-\cos \theta)=\left(13.8 \times 10^{-12}\right)+\frac{\left(6.63 \times 10^{-34}\right)}{\left(9.1 \times 10^{-31}\right)\left(3 \times 10^{8}\right)}\left(1-\cos 60^{\circ}\right)$
$\lambda^{\prime}=\left(13.8 \times 10^{-12}\right)+\left[\left(2.43 \times 10^{-12}\right)(1-0.5)\right]$
$\lambda^{\prime}=\left(13.8 \times 10^{-12}\right)+\left(1.2 \times 10^{-12}\right)$
$\lambda^{\prime}=15 \times 10^{-12} \mathrm{~m}$
$\lambda^{\prime}=15 \mathrm{pm}$
Question 19.7:- What is the maximum wavelength of the two photons produced when a positron annihilates an electron? The rest mass energy of each is 0.51 MeV .
Solution:- Minimum energy of γ-ray photon as a result of mass annihilation $=\mathrm{E}_{\min }=0.51 \mathrm{MeV}$
$\mathrm{E}_{\text {min }}=0.51 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}=0.816 \times 10^{-13} \mathrm{~J}$
$\mathrm{E}_{\text {min }}=8.16 \times 10^{-14} \mathrm{~J}$
$\mathrm{E}_{\text {min }}=\frac{h c}{\lambda_{\text {max }}}$
$\lambda_{\text {max }}=\frac{h c}{E_{\text {min }}}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{8.16 \times 10^{-14}}=\frac{1.989 \times 10^{-25}}{8.16 \times 10^{-14}}=0.244 \times 10^{-11} \mathrm{~m}$
$\lambda_{\text {max }}=2.44 \times 10^{-12} \mathrm{~m}$
$\lambda_{\text {max }}=2.44 \mathrm{pm}$
Question 19.8:- Calculate the wavelength of (a) a 140 g ball moving at $40 \mathrm{~m} \mathrm{~s}^{-1}$ (b) a proton moving at the same speed (c) an electron moving at the same speed.
Solution:- (a) Mass of the ball $=\mathrm{m}=140 \mathrm{~g}=0.140 \mathrm{~kg}$
Speed of the ball $=v=40 \mathrm{~m} \mathrm{~s}^{-1}$
de Broglie wavelength $=\lambda=\mathrm{h} / \mathrm{mv}=\left(6.63 \times 10^{-34}\right) /(0.140)(40)$
$\lambda=1.18 \times 10^{-34} \mathrm{~m}$
(b) Mass of the proton $=\mathrm{m}=1.67 \times 10^{-27} \mathrm{~kg}$

Speed of the proton $=v=40 \mathrm{~m} \mathrm{~s}^{-1}$
de Broglie wavelength $=\lambda=\mathrm{h} / \mathrm{mv}=\left(6.63 \times 10^{-34}\right) /\left(1.67 \times 10^{-27}\right)(40)$
$\lambda=9.92 \times 10^{-9} \mathrm{~m}$
$\lambda=9.92 \mathrm{~nm}$
(c) Mass of the electron $=\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$

Speed of the ball $=v=40 \mathrm{~m} \mathrm{~s}^{-1}$
de Broglie wavelength $=\lambda=\mathrm{h} / \mathrm{mv}=\left(6.63 \times 10^{-34}\right) /\left(9.1 \times 10^{-31}\right)(40)$
$\lambda=1.82 \times 10^{-5} \mathrm{~m}$
Question 19.9:- What is the de Broglie wavelength of an electron whose kinetic energy is 120 eV?
Solution:- Kinetic energy of the electron $=$ K.E. $=120 \mathrm{eV}=120 \times 1.6 \times 10^{-19} \mathrm{~J}$
K.E. $=1.92 \times 10^{-17} \mathrm{~J}$

Mass of the electron $=\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$
de Broglie wavelength $=\lambda=\frac{h}{\sqrt{2 m \text { K.E. }}}$
$\lambda=\frac{6.63 \times 10^{-34}}{\sqrt{2\left(9.1 \times 10^{-31}\right)\left(1.92 \times 10^{-17}\right)}}=\left(6.63 \times 10^{-34}\right) /\left(5.91 \times 10^{-24}\right)$
$\lambda=1.12 \times 10^{-10} \mathrm{~m}$
Question 19.10:- An electron is placed in a box about the size of an atom that is about $1.0 \times 10^{-}$
${ }^{10} \mathrm{~m}$. What is the velocity of electron?
Solution:- Mass of the electron $=\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$
Size of the box $=\Delta x=1.0 \times 10^{-10} \mathrm{~m}$
Speed of the electron $=\Delta v$
According to uncertainty principle $\Delta \mathrm{p} \Delta \mathrm{x}=\mathrm{h}$
$(m \Delta v)(\Delta x)=h$
$\Delta \mathrm{v}=\mathrm{h} / \mathrm{m} \Delta \mathrm{x}$
$\Delta \mathrm{v}=\left(6.63 \times 10^{-34}\right) /\left(9.1 \times 10^{-31}\right)\left(1.0 \times 10^{-10}\right)$
$\Delta \mathrm{v}=7.29 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$

