CHAPTER NO. 18(ELECTRONICS)

Question 18.1:- The current flowing into the base of a transistor is $100 \mu \mathrm{~A}$. Find its collector current I_{c}, its emitter current I_{E} and the ratio $\mathrm{I}_{\mathrm{c}} / \mathrm{I}_{\mathrm{E}}$, if the value of current gain β is 100 .
Solution:- Base current $=I_{B}=100 \mu \mathrm{~A}=100 \times 10^{-6} \mathrm{~A}=0.1 \mathrm{~mA}$
Current gain $=\beta=100$
Collector current $=I_{C}=\beta I_{B}=(100)\left(100 \times 10^{-6}\right)$
I C $=1 \times 10^{-2} \mathrm{~A}=10 \times 10^{-3} \mathrm{~A}$
$\mathrm{I} \mathrm{C}=10 \mathrm{~mA}$
Emitter current $=\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}+0.1 \mathrm{~mA}$
$\underline{\mathrm{I}}=10.1 \mathrm{~mA}$
The ratio of currents $=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA} / 10.1 \mathrm{~mA}$
$\mathrm{Ic} / \mathrm{IE}=0.99$
Question 18.2:- Fig.P.18.2 shows a transistor which operates a relay as the switch S is closed. The relay is energized by a current of 10 mA . Calculate the value of R_{B} which will just make the relay to operate. The current gain β of the transistor is 200 . When the transistor conducts, its $V_{\text {be }}$ can be assumed to be 0.6 V .

Solution:- Power supply voltage $=\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$
Relay current $=\mathrm{I} \mathrm{C}=10 \mathrm{~mA}=0.01 \mathrm{~A}$
Current gain $=\beta=200$
Potential drop between base and emitter $=\mathrm{V}_{\mathrm{BE}}=0.6 \mathrm{~V}$
We can find I_{B} by using the relation $\mathrm{I}_{\mathrm{C}}=\beta$ Ів

$\mathrm{I}_{\mathrm{B}}=\mathrm{I} \mathrm{C} / \beta=0.01 / 200=0.00005 \mathrm{~A}=50 \times 10^{-6} \mathrm{~A}=50 \mu \mathrm{~A}$
Applying Kirchhoff's second rule to base loop gives $V_{C C}=I_{B} R_{B}+V_{B E}$
$R_{B}=\left(V_{C C}-V_{B E}\right) / I_{B}=(9-0.6) /\left(50 \times 10^{-6}\right)$
$\mathrm{R}_{\mathrm{B}}=0.168 \times 10^{6} \Omega=168 \times 10^{3} \Omega$
$\mathrm{R}_{\mathrm{B}}=168 \mathrm{k} \Omega$
Question 18.3:- In circuit (Fig.P.18.3), there is negligible potential drop between B and E, if $\boldsymbol{\beta}$ is 100 . Calculate (i) base current (ii) collector current (iii) potential drop across Rc (iv) Vce.

Solution:- Current gain $=\beta=100$
Base resistance $=\mathrm{R}_{\mathrm{B}}=800 \mathrm{k} \Omega=800 \times 10^{3} \Omega$
Collector resistance $=\mathrm{R}_{\mathrm{C}}=1 \mathrm{k} \Omega=1 \times 10^{3} \Omega$
Power supply voltage $=\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$

Potential drop between base and emitter $=\mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V}$
(i) Applying Kirchhoff's second rule across base loop gives $V_{C C}=I_{B} R_{B}+V_{B E}$
$\mathrm{I}_{\mathrm{B}}=\left(\mathrm{Vcc}-\mathrm{V}_{\mathrm{be}}\right) / \mathrm{R}_{\mathrm{b}}$
$\mathrm{I}_{\mathrm{B}}=(9-0) /\left(800 \times 10^{3}\right)=0.01125 \times 10^{-3} \mathrm{~A}$
$\mathrm{I}_{\mathrm{B}}=11.25 \times 10^{-6} \mathrm{~A}$
$\underline{I_{B}}=11.25 \mu \mathrm{~A}$
(ii) Collector current $=I_{\text {C }}=\beta \mathrm{I}_{\mathrm{B}}=(100)\left(11.25 \times 10^{-6}\right)=1.125 \times 10^{-3} \mathrm{~A}$
$\mathrm{IC}=1.125 \mathrm{~mA}$
(iii) Potential drop across $\mathrm{R}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}=\left(1.125 \times 10^{-3}\right)\left(1 \times 10^{3}\right)$

Potential drop across $\mathrm{R}_{\mathrm{c}}=1.125 \mathrm{~V}$

(iv) Applying Kirchhoff's second rule across collector loop gives $V_{C C}=I_{C} R_{C}+V_{C E}$
$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}=9-\left(1.125 \times 10^{-3}\right)\left(1 \times 10^{3}\right)$
$V_{C E}=9-1.125$

$\mathrm{V}_{\mathrm{CE}}=7.875 \mathrm{~V}$

Question 18.4:- Calculate the output of the op-amp circuit shown in Fig.P.18.4.
Solution:- $\mathrm{R}_{2}=20 \mathrm{k} \Omega$
$\mathrm{R}_{1}=10 \mathrm{k} \Omega$
$\mathrm{R}_{1}{ }^{\prime}=4 \mathrm{k} \Omega$
$\mathrm{V}_{1}=+5 \mathrm{~V}$
$\mathrm{V}_{2}=-2 \mathrm{~V}$
There are two input voltages V_{1} and V_{2}. We have to find
 output voltages due to both input separately and then them.
In an amplifier, $V_{\text {out }}=G V_{\text {in }}$ where G is voltage gain. For op-amp in inverting configuration, G
$=-R_{2} / R_{1}$
$V_{\text {out }}=\left(-R_{2} / R_{1}\right) V_{1}+\left(-R_{2} / R_{1}\right)^{\prime} V_{2}=(-20 / 10)(5)+(-20 / 4)(-2)$
$V_{\text {out }}=-10+10$
$V_{\text {out }}=0 \mathrm{~V}$
Question 18.5:- Calculate the gain of non-inverting amplifier shown in Fig.P.18.5.
Solution:- $\mathrm{R}_{2}=40 \mathrm{k} \Omega$
$\mathrm{R}_{1}=10 \mathrm{k} \Omega$
Gain on non-inverting amplifier $=\mathrm{G}=1+\frac{R_{2}}{R_{1}}$
$\mathrm{G}=1+(40 / 10)=1+4$
$\mathrm{G}=5$

Fig. R. 18.5

