CHAPTER NO. 17(PHYSICS OF SOLIDS)

Question 17.1:- A 1.25 cm diameter cylinder is subjected to a load of 2500 kg . Calculate the stress on the bar in mega pascals.
Solution:- Diameter of the cylinder $=\mathrm{d}=1.25 \mathrm{~cm}$
Load on the cylinder $=\mathrm{m}=2500 \mathrm{~kg}$
Stress $=\sigma=\frac{F}{A}=\frac{m g}{\pi d^{2} / 4}=\frac{4 m g}{\pi d^{2}}=\frac{4(2500)(9.8)}{3.14(0.0125)^{2}}$
$\sigma=199745222 \mathrm{~Pa}$
$\sigma=200 \times 10^{6} \mathrm{~Pa}$
$\sigma=200 \mathrm{MPa}$
Question 17.2:- A 1.0 m long copper wire is subjected to stretching force and its length increases by 20 cm . Calculate the tensile strain and the percent elongation which the wire undergoes.

Solution:- Length of copper wire $=\mathrm{l}=1.0 \mathrm{~m}$
Change in length if copper wire $=\Delta \mathrm{l}=20 \mathrm{~cm}=0.20 \mathrm{~m}$
Tensile strain $=\varepsilon=\Delta \mathrm{l} / \mathrm{l}=0.20 / 1$
$\varepsilon=0.20$
Percent elongation $=$ Tensile strain $\times 100 \%$
Percent elongation $=(0.20) \times 100 \%$
Percent elongation $=20 \%$
Question 17.3:- A wire 2.5 m long and cross sectional area $10^{-5} \mathrm{~m}^{2}$ is stretched 1.5 mm by a force of 100 N in the elastic region. Calculate (i) the strain (ii) Young's modulus (iii) the energy stored in the wire.
Solution:- Length of wire $=1=2.5 \mathrm{~m}$
Cross sectional area of wire $=10^{-5} \mathrm{~m}^{2}$
Change in length of wire $=\Delta \mathrm{l}=1.5 \mathrm{~mm}=1.5 \times 10^{-3} \mathrm{~m}$
Stretching force $=F=100 \mathrm{~N}$
(a) Strain $=\varepsilon=\Delta \mathrm{l} / \mathrm{l}=\left(1.5 \times 10^{-3}\right) / 2.5=0.6 \times 10^{-3}$
$\varepsilon=6.0 \times 10^{-4}$
(b) Young's modulus $=Y=$ Stress $/$ Strain $=\sigma / \varepsilon$
$\mathrm{Y}=\frac{F / A}{\Delta l / l}$
$\mathrm{Y}=\frac{100 / 10^{-5}}{6 \times 10^{-4}}$
$\mathrm{Y}=0.166 \times 10^{11} \mathrm{~Pa}$
$\mathrm{Y}=1.66 \times 10^{10} \mathrm{~Pa}$
(c) Energy stored in the wire $=\mathrm{W}=\frac{1}{2} \mathrm{~F} \Delta \mathrm{l}=\frac{1}{2}(100)\left(1.5 \times 10^{-3}\right)$
$\underline{W}=7.5 \times 10^{-2} \mathrm{I}$
Question 17.4:- What stress would cause a wire to increase by 0.01% if the Young's modulus of the wire is $12 \times 10^{10} \mathrm{~Pa}$. What force would produce this stress if the diameter of the wire is 0.56 mm ?

Solution:- Diameter of the wire $=\mathrm{d}=0.56 \mathrm{~mm}=0.56 \times 10^{-3} \mathrm{~m}$
Young's modulus of wire $=\mathrm{Y}=12 \times 10^{10} \mathrm{~Pa}$
Strain in the wire $=\varepsilon=0.01 \%$
$\varepsilon=0.01 / 100=1 \times 10^{-4}$
Stress of the wire $=\sigma$
Young's modulus $=\mathrm{Y}=$ Stress $/$ Strain $=\sigma / \varepsilon$
Stress $=\sigma=\mathrm{Y} \times \varepsilon=\left(12 \times 10^{10}\right) \times\left(1 \times 10^{-4}\right)$
$\underline{\sigma}=1.2 \times 10^{7} \mathrm{~Pa} \quad \therefore$ The answer in the book is not correct
Area of cross section of wire $=\mathrm{A}=\frac{\pi d^{2}}{4}=\frac{3.14 \times\left(0.56 \times 10^{-3}\right)\left(0.56 \times 10^{-3}\right)}{4}$
$\mathrm{A}=2.466 \times 10^{-7} \mathrm{~m}^{2}$
$\sigma=\mathrm{F} / \mathrm{A}$
$\mathrm{F}=\sigma \mathrm{A}$
$F=\left(1.2 \times 10^{7}\right) \times\left(2.466 \times 10^{-7}\right)$
$\mathrm{F}=2.96 \mathrm{~N}$
Question 17.5:- The length of a steel wire is 1.0 m and its cross-sectional area is 0.03×10^{-4} m^{2}. Calculate the work done in stretching the wire when a force of 100 N is applied within the elastic region. Young's modulus of steel is $3.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$.

Solution:- Length of wire $=\mathrm{l}=1.0 \mathrm{~m}$
Cross sectional area of wire $=A=0.03 \times 10^{-4} \mathrm{~m}^{2}$
Applied force $=F=100 \mathrm{~N}$
Young's modulus of wire $=\mathrm{Y}=3.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$
Change in length of wire $=\Delta \mathrm{l}$
$\mathrm{Y}=\frac{F / A}{\Delta l / l}$
$\Delta l / l=\mathrm{F} / \mathrm{AY}$

$$
\Delta l=F l / A Y
$$

$\Delta \mathrm{l}=(100)(1.0) /\left(0.03 \times 10^{-4}\right)\left(3.0 \times 10^{11}\right)$
$\Delta \mathrm{l}=1.11 \times 10^{-4} \mathrm{~m}$

Work done $=\mathrm{W}=\frac{1}{2} \mathrm{~F} \Delta \mathrm{l}=\frac{1}{2}(100)\left(1.11 \times 10^{-4}\right)=0.555 \times 10^{-2} \mathrm{~J}$
$\mathrm{W}=5.6 \times 10^{-3} \mathrm{I}$
Question 17.6:- A cylindrical copper wire and a cylindrical steel wire each of length 1.5 m and diameter 2.0 mm are joined at one end to form a composite wire 3.0 m long. The wire is loaded until its length becomes 3.003 m . Calculate the strain in copper and steel wires and the force applied to the wire. (Young's modulus of copper is $1.2 \times 10^{11} \mathrm{~Pa}$ and for steel is 2.0 x $10^{11} \mathrm{~Pa}$).
Solution:- Length of steel wire $=\mathrm{l}_{\mathrm{S}}=1.5 \mathrm{~m}$
Length of copper wire $=l_{C}=1.5 \mathrm{~m}$
Combined length of wires $=\mathrm{l}=\mathrm{l}_{\mathrm{s}}+\mathrm{l}_{\mathrm{c}}=3.0 \mathrm{~m}$
Final length of combined wire $=l^{\prime}=3.003 \mathrm{~m}$
Change in length of combined wire $=\Delta \mathrm{l}=\mathrm{l}^{\prime}-\mathrm{l}=3.003-3.0=0.003 \mathrm{~m}$
We know that $\Delta \mathrm{l}=\Delta \mathrm{l} \mathrm{s}+\Delta \mathrm{l} \mathrm{c}=0.003 \& \Delta \mathrm{l} \mathrm{s}=0.003-\Delta \mathrm{l} \mathrm{c}$
Young's modulus of steel wire $=\mathrm{Y}_{S}=2.0 \times 10^{11} \mathrm{~Pa}$
Young's modulus of steel wire $=\mathrm{Y}_{\mathrm{C}}=1.2 \times 10^{11} \mathrm{~Pa}$
Diameter of both wires $=\mathrm{d}=2.0 \mathrm{~mm}=2.0 \times 10^{-3} \mathrm{~m}$
Area of cross section of both wires $=\mathrm{A}=\pi \frac{d^{2}}{4}=(3.14)\left(\left(2.0 \times 10^{-3}\right)^{2} / 4\right)$
$\mathrm{A}=3.14 \times 10^{-6} \mathrm{~m}^{2}$
Both wires of same diameter are connected to form a composite wire, therefore applied stress would be same on both.
$\sigma \mathrm{S}=\sigma \mathrm{C}$
$\mathrm{Ys} \times \frac{\Delta l_{S}}{l_{S}}=\mathrm{Yc} \times \frac{\Delta l_{C}}{l_{C}}$
$\left(2.0 \times 10^{11}\right)(0.003-\Delta \mathrm{l} \mathrm{c})=\left(1.2 \times 10^{11}\right) \Delta \mathrm{l} \mathrm{c}$
$\therefore \mathrm{l}_{\mathrm{C}}=\mathrm{l}$ s
$0.006-2 \Delta \mathrm{l}=1.2 \Delta \mathrm{l} \mathrm{c}$
$3.2 \Delta \mathrm{lc}=0.006$
$\Delta \mathrm{l} \mathrm{C}=0.001875 \mathrm{~m}$
(i) Strain in copper wire $=\varepsilon_{\mathrm{C}}=\Delta \mathrm{l}_{\mathrm{C}} / \mathrm{l}_{\mathrm{C}}=(0.001875) / 1.5$
$\underline{\varepsilon}=1.25 \times 10^{-3}$
(ii) Strain in steel wire $=\varepsilon s=\Delta \mathrm{l} / \mathrm{l} \mathrm{l}=(0.003-\Delta \mathrm{l} \mathrm{c}) / 1.5=(0.003-0.001875) / 1.5$
$\underline{\varepsilon}=0.75 \times 10^{-3}$
(iii) Force applied to the wire $=F$

We know that Young's modulus can be determined by $\mathrm{Y}=\frac{F / A}{\Delta l / i}$.

We can find force by using any of the following relation $\mathrm{F}=\frac{Y_{C} A \Delta l_{C}}{l_{C}}$ or $\mathrm{F}=\frac{Y_{S} A \Delta l_{S}}{l_{S}}$
We use $\mathrm{F}=\frac{Y_{S} A \Delta l_{S}}{l_{S}}=\mathrm{Y}_{S} A \varepsilon s$
$\mathrm{F}=\left(2.0 \times 10^{11}\right)\left(3.14 \times 10^{-6}\right)\left(0.75 \times 10^{-3}\right)$
$\mathrm{F}=4.71 \times 10^{2} \mathrm{~N}$
$\mathrm{F}=471 \mathrm{~N}$

