CHAPTER NO. 16(ALTERNATING CURRENT)

Question 16.1:- An alternating current is represented by the equation $I=20 \sin 100 \pi t$. Compute its frequency and the maximum and rms values of current.
Solution:- Given representation of alternating current source $I=20 \sin 100 \pi t$
Standard representation of alternating current source $I=I_{o} \sin 2 \pi f t$
Comparing both equations gives $\mathrm{I}_{\mathrm{o}}=20 \mathrm{~A}$ and $2 \pi \mathrm{ft}=100 \pi \mathrm{t}$
Frequency $=f=50 \mathrm{~Hz}$
Maximum value $=\mathrm{I}_{0}=20 \mathrm{~A}$
Root mean square value of current $=I_{\text {rms }}=I_{o} / \sqrt{2}=20 / 1.414$
$\underline{I r m s}=14 \mathrm{~A}$
Question 16.2:- A sinusoidal A.C. has a maximum value of 15 A . What is its rms value? If the time is recorded from the instant the current is zero and is becoming positive, what is the instantaneous value of the current after $1 / 300 \mathrm{~s}$, given the frequency is 50 Hz .
Solution:- Peak value of current $=\mathrm{I}_{\mathrm{o}}=15 \mathrm{~A}$
Root mean square value of current $=I_{\text {rms }}=I_{o} / \sqrt{2}=15 / 1.414$
$\underline{\text { Irms }}=10.6 \mathrm{~A}$
Time instant $=t=1 / 300 \mathrm{~s}$
Frequency $=\mathrm{f}=50 \mathrm{~Hz}$
Instantaneous value of current $=I=I_{0} \sin 2 \pi f t=(15) \sin 2 \pi(50)\left(\frac{1}{300}\right)$
$\mathrm{I}=15 \sin \frac{\pi}{3}=15 \sin 60^{\circ}=15(0.866)$
$\mathrm{I}=13.0 \mathrm{~A}$
Question 16.3:- Find the rms value of current and the inductive reactance when A.C. voltage of 220 V at 50 Hz is passed through an inductor of 10 H .
Solution:- Root mean square value of alternating voltage $=\mathrm{V}_{\mathrm{rms}}=220 \mathrm{~V}$
Frequency $=\mathrm{f}=50 \mathrm{~Hz}$
Inductance of inductor $=\mathrm{L}=10 \mathrm{H}$
Inductive reactance of inductor $=X_{L}=\omega L=2 \pi f L$
$\mathrm{X}_{\mathrm{L}}=2$ (3.14) (50) (10)
$\underline{X_{L}}=3140 \Omega$
Root mean square value of current $=I_{\text {rms }}=V_{r m s} / X_{L}$
$I_{\text {rms }}=220 / 3140$
$\underline{\mathrm{Irms}}=0.07 \mathrm{~A}$

Question 16.4:- A circuit has an inductance of $1 / \pi \mathrm{H}$ and resistance of 2000Ω. A 50 Hz A.C. is supplied to it. Calculate the reactance and impedance offered by the circuit.
Solution:- Inductance of the inductor $=L=1 / \pi H$
Resistance $=R=2000 \Omega$
Frequency $=\mathrm{f}=50 \mathrm{~Hz}$
Reactance $=X_{L}=\omega L=2 \pi f L=2(\pi)(50)(1 / \pi)$
$\mathrm{X}_{\mathrm{L}}=100 \Omega$
Impedance offered by RL circuit $=\mathrm{Z}=\sqrt{R^{2}+X_{L}{ }^{2}}=\sqrt{(2000)^{2}+(100)^{2}}$
$\underline{Z}=2002.5 \Omega$
Question 16.5:- An inductance of pure inductance $3 / \pi \mathrm{H}$ is connected in series with a resistance of 40.0Ω. Find (i) the peak value of the current (ii) The rms value, and (iii) the phase difference between the current and the applied voltage $V=350 \sin (100 \pi t)$.
Solution:- Inductance of inductor $=L=3 / \pi \mathrm{H}$
Resistance $=R=40.0 \Omega$
Given representation of alternating voltage is $V=350 \sin (100 \pi t)$
Standard representation of alternating voltage is $V=\nabla_{0} \sin 2 \pi \mathrm{ft}$
Comparing both equation gives $\underline{V}_{\mathbf{0}}=\mathbf{3 5 0} \mathrm{V}$ and $2 \pi \mathrm{ft}=100 \pi \mathrm{t}$
$\mathrm{f}=50 \mathrm{~Hz}$
Reactance of the inductor $=\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=2 \pi(50)(3 / \pi)=300 \Omega$
Impedance offered by RL circuit $=Z=\sqrt{R^{2}+X_{L}{ }^{2}}=\sqrt{(40)^{2}+(300)^{2}}=302.65 \Omega$
(i) Peak value of current $=I_{o}=V_{0} / Z=350 / 302.65$
$\underline{\mathrm{I}_{0}=1.16 \mathrm{~A}}$
(ii) Root mean square value of current $=\mathrm{Irms}=\mathrm{I}_{\mathrm{o}} / \sqrt{2}=1.16 / 1.414$

$\underline{\mathrm{Irms}}=0.81 \mathrm{~A}$

(iii) Phase angle $=\theta=\tan ^{-1}\left(\mathrm{X}_{\mathrm{L}} / \mathrm{R}\right)=\tan ^{-1}(300 / 40)$
$\theta=\tan ^{-1}(7.5)$
$\theta=81.4^{\circ}$
Question 16.6:- A $10 \mathrm{mH}, 20 \Omega$ coil is connected across a 240 V and $180 / \pi \mathrm{Hz}$ source. How much power does it dissipate?
Solution:- Inductance of the coil $=\mathrm{L}=10 \mathrm{mH}=0.010 \mathrm{H}$
Resistance of the coil $=\mathrm{R}=20 \Omega$
Root mean square voltage $=V_{\text {rms }}=240 \mathrm{~V}$
Frequency of the source $=\mathrm{f}=180 / \pi \mathrm{Hz}$
Power dissipated $=P=V_{\text {rms }} I_{\text {rms }} \cos \theta$

Reactance of the coil $=X_{L}=2 \pi f L=2 \pi(180 / \pi)(0.010)=3.6 \Omega$
Impedance of RL circuit $=\mathrm{Z}=\sqrt{R^{2}+X_{L}{ }^{2}}=\sqrt{(20)^{2}+(3.6)^{2}}=20.32 \Omega$
Phase angle $=\theta=\tan ^{-1}\left(\mathrm{X}_{\mathrm{L}} / \mathrm{R}\right)=\tan ^{-1}(3.6 / 20)$
$\theta=\tan ^{-1}(0.18)$
$\theta=10.2^{\circ}$
$\mathrm{I}_{\mathrm{rms}}=\mathrm{V}_{\mathrm{rms}} / \mathrm{Z}=240 / 20.32=11.81 \mathrm{~A}$
$\mathrm{P}=\mathrm{V}_{\text {rms }} \mathrm{I}_{\mathrm{rms}} \cos \theta=(240)(11.81) \cos \left(10.2^{\circ}\right)=240 \times 11.81 \times 0.98$
$\mathrm{P}=2778 \mathrm{~W}$
Question 16.7:- Find the value of current flowing through a capacitor $0.5 \mu \mathrm{~F}$ when connected to a source of 150 V at 50 Hz .
Solution:- Capacitance of the capacitor $=\mathrm{C}=0.5 \mu \mathrm{~F}=0.5 \times 10^{-6} \mathrm{~F}$
Root mean square voltage $=V_{\text {rms }}=150 \mathrm{~V}$
Frequency $=\mathrm{f}=50 \mathrm{~Hz}$
Capacitive reactance of capacitor $=\mathrm{X}_{\mathrm{C}}=1 / \omega \mathrm{C}=1 / 2 \pi \mathrm{fC}=1 /(2)(3.14)(50)\left(0.5 \times 10^{-6}\right)$
XC $=0.006369 \times 10^{6} \Omega=6369 \Omega$
Root mean square current $=I_{\text {rms }}=V_{\text {rms }} / X_{C}=150 / 6369$
$I_{\text {rms }}=0.024 \mathrm{~A}$
Question 16.8:- An alternating source of emf 12 V and frequency 50 Hz is applied to a capacitor of capacitance $3 \mu \mathrm{~F}$ in series with a resistance of $1 \mathrm{k} \Omega$. Calculate the phase angle.
Solution:- Root mean square voltage $=V_{\text {rms }}=12 \mathrm{~V}$
Frequency $=\mathrm{f}=50 \mathrm{~Hz}$
Capacitance of the capacitor $=\mathrm{C}=3 \mu \mathrm{~F}$
Resistance $=\mathrm{R}=1 \mathrm{k} \Omega=1000 \Omega$
Capacitive reactance $=\mathrm{X}_{\mathrm{C}}=1 / \omega \mathrm{C}=1 / 2 \pi \mathrm{fC}=1 /(2)(3.14)(50)\left(3 \times 10^{-6}\right)$
$\mathrm{X}_{\mathrm{C}}=0.001061 \times 10^{6} \Omega$
$\mathrm{X}_{\mathrm{C}}=1061 \Omega$
Phase angle $=\theta=\tan ^{-1}\left(X_{c} / R\right)=\tan ^{-1}(1061 / 1000)$
$\theta=\tan ^{-1}$ (1.061)
$\theta=46.7^{\circ}$
Question 16.9:- What is the resonance frequency of a circuit which includes a coil of inductance 2.5 H and capacitance $40 \mu \mathrm{~F}$?
Solution:- Capacitance of the capacitor $=\mathrm{C}=40 \mu \mathrm{~F}=40 \times 10^{-6} \mathrm{~F}$
Inductance of the coil $=\mathrm{L}=2.5 \mathrm{H}$
Resonant frequency $=\mathrm{f}_{\mathrm{o}}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2(3.14) \sqrt{(2.5)\left(40 \times 10^{-6}\right)}}$
$\mathrm{f}_{0}=\frac{1}{(6.28)\left(10 \times 10^{-3}\right)} \mathrm{Hz}$
$\mathrm{f}_{0}=15.9 \mathrm{~Hz}$
Question 16.10:- An inductor of inductance $150 \mu \mathrm{H}$ is connected in parallel with a variable capacitor whose capacitance can be changed from 500 pF to 20 pF . Calculate the maximum frequency and minimum frequency for which the circuit can be tuned.
Solution:- Inductance of the inductor $=\mathrm{L}=150 \mu \mathrm{H}=150 \times 10^{-6} \mathrm{H}$
Minimum value of capacitance $=\mathrm{C}_{\text {min }}=20 \mathrm{pF}=20 \times 10^{-12} \mathrm{~F}$
Maximum value of capacitance $=C_{\max }=500 \mathrm{pF}=500 \times 10^{-12} \mathrm{~F}$
Maximum resonant frequency $=\mathrm{f}_{\max }=\frac{1}{2 \pi \sqrt{L C_{\min }}}=\frac{1}{2(3.14) \sqrt{\left(150 \times 10^{-6}\right)\left(20 \times 10^{-12}\right)}}$
$f_{\max }=\frac{1}{(6.28)\left(54.77 \times 10^{-9}\right)}=2.91 \times 10^{6} \mathrm{~Hz}$

$\underline{f}_{\text {max }}=2.91 \mathrm{MHz}$

Minimum resonant frequency $=\mathrm{f}_{\text {min }}=\frac{1}{2 \pi \sqrt{L C_{\max }}}=\frac{1}{2(3.14) \sqrt{\left(150 \times 10^{-6}\right)\left(500 \times 10^{-12}\right)}}$
$\mathrm{f}_{\text {min }}=\frac{1}{(6.28)\left(273.86 \times 10^{-9}\right)}=5.814 \times 10^{5} \mathrm{~Hz}$
$\underline{f}_{\min }=0.58 \mathrm{MHz}$

