Numerical Problems

Physics

CHAPTER NO. 14(ELECTROMAGNETISM)

Question 14.1:- Find the value of the magnetic field that will cause a maximum force of 7.0 x 10⁻³ Non a 20.0 cm straight wire carrying a current of 10.0 A. **Solution:-** Maximum force = $F_{max} = 7.0 \times 10^{-3} N$ Length of wire = L = 20.0 cm = 0.20 mCurrent = I = 10.0 AForce on a current carrying wire = $F = I L B \sin \alpha$ For maximum force, $\alpha = 90^{\circ}$ and sin $\alpha = 1$ $F_{max} = I L B$ $B = \frac{F_{max}}{IL} = (7.0 \text{ x } 10^{-3}) / (10.0)(0.20)$ $B = 3.5 \times 10^{-3} T$ Question 14.2:- How fast must a proton move in a magnetic field of 2.50 x 10⁻³ T such that the magnetic force is equal to its weight? **Solution:-** Applied magnetic field = $B = 2.50 \times 10^{-3} T$ Charge of proton = $q = 1.60 \times 10^{-19} C$ Mass of proton = $m = 1.67 \times 10^{-27} \text{ kg}$ According to condition of the question: Magnetic force on proton = Weight of proton $q v B sin \theta = m g$ Since θ is not given in the question, we will consider it 90° for maximum force on moving proton. $q v B sin 90^{\circ} = m g$

$$\mathbf{v} = \frac{m g}{q B} = \frac{1.67 x \, 10^{-27} x \, 9.8}{1.60 x \, 10^{-19} x \, 2.50 x \, 10^{-3}}$$

$$v = 4.09 \times 10^{-5} \text{ m s}^{-1}$$

q B

Question 14.3:- A velocity selector has a magnetic field of 0.30 T. If a perpendicular electric field of 10,000 V m⁻¹ is applied, what will be the speed of the particle that will pass through the selector?

Solution:- Applied magnetic field = B = 0.30 T

Applied electric field = $E = 10,000 \text{ V m}^{-1}$

In a velocity selector, only those particles pass through its un-deflected for which maximum magnetic force is equal to electric force.

q v B = q Ev B = Ev = E/B

Numerical Problems

Physics

v = 10,000/0.30

 $v = 3.3 \times 10^4 \text{ m s}^{-1}$

Question 14.4:- A coil of 0.1 m x 0.1 m and of 200 turns carrying a current of 1.0 mA is placed in a uniform magnetic field of 0.1 T. Calculate the maximum torque that acts on the coil.

Solution:- Length of coil = L = 0.1 m

Width of coil = W = 0.1 m

Area of cross section of coil = $A = L \times W = 0.1 \times 0.1 = 0.01 \text{ m}^2$

Current through coil = I = 1.0 mA = 0.001 A

Applied magnetic field = B = 0.1 T

Number of turns of coil = N = 200

The torque applied by magnetic field on a current carrying coil is $\tau = N I B A \cos \alpha$

For maximum torque, angle α must be 0°.

 $\tau_{max} = N I B A$

 $\tau_{\text{max}} = (200) \ (0.001) \ (0.1) \ (0.01)$

 $\tau_{max} = 2 \ge 10^{-4} \le 10^{-4}$

Question 14.5:- A power line 10.0 m high carries a current 200 A. Find the magnetic field of the wire at the ground.

Solution:- Height of power line = r = 10.0 m

Current in power line = I = 200 A

According to Ampere's law $\vec{B} \cdot \vec{\Delta L} = \mu_{or}$

 $B \Delta L \cos \theta = \mu_o I$

Consider an Amperian loop in the form of circle of radius r = 10.0 m around the power line.

Since wire is straight, the magnetic field and length element both are along the tangent i.e. $\theta = 0^{\circ}$ and $\cos \theta = 1$.

Length of circular Amperian loop of radius $r = \Delta L = 2 \pi r$

B (2 \pi r) =
$$\mu_o I$$

B = $\frac{\mu_o I}{2 \pi r} = \frac{4 \times 3.14 \times 10^{-7} \times 200}{2 \times 3.14 \times 10}$

$$B = 4 \ge 10^{-6} T$$

Question 14.6:- You are asked to design a solenoid that will give a magnetic field of 0.10 T, yet the current must not exceed 10.0 A. Find the number of turns per unit length that the solenoid should have.

Solution:- Required magnetic field = B = 0.10 T Current passing through solenoid = I = 10.0 A Magnetic field inside the solenoid = $B = \mu_0$ n I

Numerical Problems

Physics

$n = \frac{B}{\mu_o I} = \frac{0.10}{4 x \, 3.14 \, x \, 10^{-7} x \, 10.0}$

 $n = 7.96 \times 10^3 \text{ turns m}^{-1}$

Question 14.7:- What current should pass through a solenoid that is 0.5 m long with 10,000 turns of copper wire so that it will have a magnetic field of 0.4 T?

Solution:- Length of solenoid = L = 0.5 m

Number of turns of solenoid = N = 10,000

Required magnetic field inside solenoid = B = 0.4 T

B =
$$\mu_0$$
 n I = $\mu_0 \frac{N}{L}$ I
I = $\frac{B L}{\mu_0 N} = \frac{0.4 \times 0.5}{4 \times 3.14 \times 10^{-7} \times 10,000} = 15.96$ A

<u>I = 16.0 A</u>

Question 14.8:- A galvanometer having an internal resistance $R_g = 15.0 \Omega$ gives full scale deflection with current $I_g = 20.0$ mA. It is to be converted into an ammeter of range 10.0 A. Find the value of shunt resistance Rs.

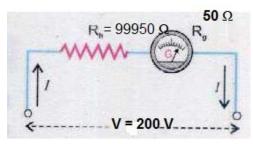
Solution:- Internal resistance of galvanometer = $R_g = 15.0 \ \Omega$

Full scale deflection current = $I_g = 20.0 \text{ mA} = 0.020 \text{ A}$

Range of ammeter = I = 10.0 A

$$R_{S} = \frac{I_{g}R_{g}}{I - I_{g}} = \frac{(0.020)(15.0)}{10 - 0.020}$$

$\underline{\mathrm{R}_{\mathrm{S}}}=0.030~\Omega$


Question 14.9:- The resistance of a galvanometer is 50.0 Ω and reads full scale deflection with a current of 2.0 mA. Show by a diagram how to convert this galvanometer into voltmeter reading 200 V full scale.

Solution:- Internal resistance of galvanometer = $R_g = 50.0 \Omega$

Full scale deflection current = $I_g = 2.0 \text{ mA} = 0.002 \text{ A}$

Range of voltmeter = V = 200 V

$$R_{\rm h} = \frac{v}{I_g} - R_{\rm g}$$
$$R_{\rm h} = \frac{200}{0.002} - 50.0$$

Question 14.10:- The resistance of a galvanometer coil is 10.0 Ω and reads full scale with a current of 1.0 mA. What should be the values of resistances R₁, R₂ and R₃ to convert this galvanometer into multirange ammeter of 100, 10.0 and 1.0 A as shown in the figure.

Solution:- Internal resistance of galvanometer = $R_g = 10.0 \; \Omega$

Numerical Problems

Physics

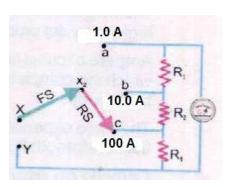
Full scale deflection current = $I_{\rm g} = 1.0 \mbox{ mA} = 0.001 \mbox{ A}$

(a) Range of ammeter = I = 100 A

$$R_1 = \frac{I_g R_g}{I - I_g} = \frac{(0.001)(10.0)}{100 - 0.001}$$

$\underline{R_1=0.0001~\Omega}$

(b) Range of ammeter = I = 10.0 A


$$R_2 = \frac{I_g R_g}{I - I_g} = \frac{(0.001)(10.0)}{10 - 0.001}$$

$\underline{R_2 = 0.001 \Omega}$

(c) Range of ammeter = I = 1.0 A

$$R_3 = \frac{I_g R_g}{I - I_g} = \frac{(0.001)(10.0)}{1.0 - 0.001}$$

$$\underline{R_3 = 0.01 \ \Omega}$$

easynotes.pk