Question 14.1:- Find the value of the magnetic field that will cause a maximum force of 7.0 x 10^{-3} Non a 20.0 cm straight wire carrying a current of 10.0 A .
Solution:- Maximum force $=\mathrm{F}_{\max }=7.0 \times 10^{-3} \mathrm{~N}$
Length of wire $=\mathrm{L}=20.0 \mathrm{~cm}=0.20 \mathrm{~m}$
Current $=\mathrm{I}=10.0 \mathrm{~A}$
Force on a current carrying wire $=\mathrm{F}=\mathrm{ILB} \sin \alpha$
For maximum force, $\alpha=90^{\circ}$ and $\sin \alpha=1$
$\mathrm{F}_{\text {max }}=\mathrm{IL} \mathrm{B}$
$\mathrm{B}=\frac{F_{\max }}{I L}=\left(7.0 \times 10^{-3}\right) /(10.0)(0.20)$
$B=3.5 \times 10^{-3} \mathrm{~T}$
Question 14.2:- How fast must a proton move in a magnetic field of $2.50 \times 10^{-3} \mathrm{~T}$ such that the magnetic force is equal to its weight?
Solution:- Applied magnetic field $=B=2.50 \times 10^{-3} \mathrm{~T}$
Charge of proton $=\mathrm{q}=1.60 \times 10^{-19} \mathrm{C}$
Mass of proton $=\mathrm{m}=1.67 \times 10^{-27} \mathrm{~kg}$
According to condition of the question: Magnetic force on proton $=$ Weight of proton
$\mathrm{q} v \mathrm{~B} \sin \theta=\mathrm{mg}$
Since θ is not given in the question, we will consider it 90° for maximum force on moving proton.
$\mathrm{q} v \mathrm{~B} \sin 90^{\circ}=\mathrm{mg}$
$\mathrm{v}=\frac{m g}{q B}=\frac{1.67 \times 10^{-27} \times 9.8}{1.60 \times 10^{-19} \times 2.50 \times 10^{-3}}$
$\mathrm{v}=4.09 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}$
Question 14.3:- A velocity selector has a magnetic field of 0.30 T . If a perpendicular electric field of $10,000 \mathrm{~V} \mathrm{~m}^{-1}$ is applied, what will be the speed of the particle that will pass through the selector?

Solution:- Applied magnetic field $=\mathrm{B}=0.30 \mathrm{~T}$
Applied electric field $=\mathrm{E}=10,000 \mathrm{~V} \mathrm{~m}^{-1}$
In a velocity selector, only those particles pass through its un-deflected for which maximum magnetic force is equal to electric force.
$q \vee B=q E$
vB=E
$v=E / B$
$\mathrm{v}=10,000 / 0.30$
$\mathrm{v}=3.3 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
Question 14.4:- A coil of 0.1 mx 0.1 m and of 200 turns carrying a current of 1.0 mA is placed in a uniform magnetic field of 0.1 T . Calculate the maximum torque that acts on the coil.
Solution:- Length of coil $=\mathrm{L}=0.1 \mathrm{~m}$
Width of coil $=W=0.1 \mathrm{~m}$
Area of cross section of coil $=\mathrm{A}=\mathrm{L} \times \mathrm{W}=0.1 \times 0.1=0.01 \mathrm{~m}^{2}$
Current through coil $=\mathrm{I}=1.0 \mathrm{~mA}=0.001 \mathrm{~A}$
Applied magnetic field $=B=0.1 \mathrm{~T}$
Number of turns of coil $=\mathrm{N}=200$
The torque applied by magnetic field on a current carrying coil is $\tau=$ NIB A $\cos \alpha$
For maximum torque, angle α must be 0°.
$\tau_{\text {max }}=$ NIBA
$\tau_{\max }=(200)(0.001)(0.1)(0.01)$
$\underline{\tau}_{\text {max }}=2 \times 10^{-4} \mathrm{~N} \mathrm{~m}$
Question 14.5:- A power line 10.0 m high carries a current 200 A . Find the magnetic field of the wire at the ground.
Solution:- Height of power line $=r=10.0 \mathrm{~m}$
Current in power line $=\mathrm{I}=200 \mathrm{~A}$
According to Ampere's law $\vec{B} \cdot \overrightarrow{\Delta L}=\overrightarrow{\mu_{0} I}$
B $\Delta \mathrm{L} \cos \theta=\mu_{o} I$
Consider an Amperian loop in the form of circle of radius $r=10.0 \mathrm{~m}$ around the power line.
Since wire is straight, the magnetic field and length element both are along the tangent i.e. $\theta=$ 0° and $\cos \theta=1$.

Length of circular Amperian loop of radius $r=\Delta L=2 \pi r$
B $(2 \pi \mathrm{r})=\mu_{o} I$
$\mathrm{B}=\frac{\mu_{o} I}{2 \pi r}=\frac{4 \times 3.14 \times 10^{-7} \times 200}{2 \times 3.14 \times 10}$
$B=4 \times 10^{-6} \mathrm{~T}$
Question 14.6:- You are asked to design a solenoid that will give a magnetic field of 0.10 T , yet the current must not exceed 10.0 A . Find the number of turns per unit length that the solenoid should have.
Solution:- Required magnetic field $=B=0.10 \mathrm{~T}$
Current passing through solenoid $=\mathrm{I}=10.0 \mathrm{~A}$
Magnetic field inside the solenoid $=B=\mu_{o} n I$
$\mathrm{n}=\frac{B}{\mu_{o} I}=\frac{0.10}{4 \times 3.14 \times 10^{-7} \times 10.0}$
$\underline{n}=7.96 \times 10^{3}$ turns m^{-1}
Question 14.7:- What current should pass through a solenoid that is 0.5 m long with 10,000 turns of copper wire so that it will have a magnetic field of 0.4 T ?
Solution:- Length of solenoid $=\mathrm{L}=0.5 \mathrm{~m}$
Number of turns of solenoid $=\mathrm{N}=10,000$
Required magnetic field inside solenoid $=B=0.4 \mathrm{~T}$
$\mathrm{B}=\mu_{\mathrm{o}} \mathrm{nI}=\mu_{\mathrm{o}} \frac{N}{L} \mathrm{I}$
$\mathrm{I}=\frac{\mathrm{BL}}{\mu_{o} N}=\frac{0.4 \times 0.5}{4 \times 3.14 \times 10^{-7} \times 10,000}=15.96 \mathrm{~A}$
$\mathrm{I}=16.0 \mathrm{~A}$
Question 14.8:- A galvanometer having an internal resistance $\mathrm{Rg}_{\mathrm{g}}=15.0 \Omega$ gives full scale deflection with current $\mathrm{I}_{\mathrm{g}}=20.0 \mathrm{~mA}$. It is to be converted into an ammeter of range 10.0 A . Find the value of shunt resistance Rs.
Solution:- Internal resistance of galvanometer $=\mathrm{Rg}_{\mathrm{g}}=15.0 \Omega$
Full scale deflection current $=\mathrm{I}_{\mathrm{g}}=20.0 \mathrm{~mA}=0.020 \mathrm{~A}$
Range of ammeter $=\mathrm{I}=10.0 \mathrm{~A}$
Rs $=\frac{I_{g} R_{g}}{I-I_{g}}=\frac{(0.020)(15.0)}{10-0.020}$
$\underline{R_{s}}=0.030 \Omega$
Question 14.9:- The resistance of a galvanometer is 50.0Ω and reads full scale deflection with a current of 2.0 mA . Show by a diagram how to convert this galvanometer into voltmeter reading 200 V full scale.
Solution:- Internal resistance of galvanometer $=\mathrm{Rg}=50.0 \Omega$
Full scale deflection current $=\mathrm{I}_{\mathrm{g}}=2.0 \mathrm{~mA}=0.002 \mathrm{~A}$
Range of voltmeter $=\mathrm{V}=200 \mathrm{~V}$
$\mathrm{R}_{\mathrm{h}}=\frac{V}{I_{g}}-\mathrm{R}_{\mathrm{g}}$
$R_{h}=\frac{200}{0.002}-50.0$
$\mathrm{R}_{\mathrm{h}}=99,950 \Omega$

Question 14.10:- The resistance of a galvanometer coil is 10.0Ω and reads full scale with a current of 1.0 mA . What should be the values of resistances R_{1}, R_{2} and R_{3} to convert this galvanometer into multirange ammeter of $100,10.0$ and 1.0 A as shown in the figure.
Solution:- Internal resistance of galvanometer $=\mathrm{Rg}_{\mathrm{g}}=10.0 \Omega$

Full scale deflection current $=\mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA}=0.001 \mathrm{~A}$
(a) Range of ammeter $=\mathrm{I}=100 \mathrm{~A}$
$\mathrm{R}_{1}=\frac{I_{g} R_{g}}{I-I_{g}}=\frac{(0.001)(10.0)}{100-0.001}$
$\mathrm{R}_{1}=0.0001 \Omega$
(b) Range of ammeter $=\mathrm{I}=10.0 \mathrm{~A}$
$\mathrm{R}_{2}=\frac{I_{g} R_{g}}{I-I_{g}}=\frac{(0.001)(10.0)}{10-0.001}$

$\mathrm{R}_{2}=0.001 \Omega$
(c) Range of ammeter $=\mathrm{I}=1.0 \mathrm{~A}$
$\mathrm{R}_{3}=\frac{I_{g} R_{g}}{I-I_{g}}=\frac{(0.001)(10.0)}{1.0-0.001}$
$\mathrm{R}_{3}=0.01 \Omega$

