CHAPTER NO. 12(ELECTROSTATICS)

Question 12.1:- Compare magnitudes of electrical and gravitational forces on an object (mass $=10.0 \mathrm{~g}$, charge $=20.0 \mu \mathrm{C}$) by an identical object that is placed 10.0 cm from the first. ($\mathrm{G}=$ $6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$)
Solution:- Mass $=\mathrm{m}_{1}=\mathrm{m}_{2}=10.0 \mathrm{~g}=0.01 \mathrm{~kg}$
Charge $=\mathrm{q}_{1}=\mathrm{q}_{2}=20.0 \mu \mathrm{C}=20.0 \times 10^{-6} \mathrm{C}=2.0 \times 10^{-5} \mathrm{C}$
Distance $=r=10.0 \mathrm{~cm}=0.10 \mathrm{~m}$
$\mathrm{F}_{\mathrm{e}}=\mathrm{k} \frac{q_{1} q_{2}}{r^{2}}$ where $\mathrm{k}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
$\mathrm{F}_{\mathrm{e}}=\left(9 \times 10^{9}\right) \frac{\left(2.0 \times 10^{-5}\right)\left(2.0 \times 10^{-5}\right)}{0.10^{2}}=3.6 \times 10^{2} \mathrm{~N}$
$\mathrm{F}_{\mathrm{g}}=\mathrm{G} \frac{m_{1} m_{2}}{r^{2}}=\left(6.67 \times 10^{-11}\right) \frac{(0.01)(0.01)}{0.10^{2}}=6.67 \times 10^{-13} \mathrm{~N}$
We can compare F_{e} with Fg_{g} by taking ratio as under:-
$\frac{F_{e}}{F_{g}}=\frac{3.6 \times 10^{2}}{6.67 \times 10^{-13}}=0.54 \times 10^{15}$
$\frac{F_{e}}{F_{g}}=5.4 \times 10^{14}$
Question 12.2:- Calculate vectorially the net electrostatic force on q as shown in the figure.
Solution:- $\mathrm{q}_{1}=1.0 \mu \mathrm{C}=1.0 \times 10^{-6} \mathrm{C}$
$\mathrm{q}_{2}=-1.0 \mu \mathrm{C}=-1.0 \times 10^{-6} \mathrm{C}$
$\mathrm{q}=4.0 \mu \mathrm{C}=4.0 \times 10^{-6} \mathrm{C}$
We can see from the diagram that $\left|\overrightarrow{r_{1}}\right|=\left|\overrightarrow{r_{2}}\right|=r$
$=1.0 \mathrm{~m}$

$\overrightarrow{r_{1}}=(0.60 \hat{\imath}+0.80 \hat{\jmath}) \mathrm{m}$
$\overrightarrow{r_{2}}=(0.60 \hat{\imath}-0.80 \hat{\jmath}) \mathrm{m}$
Since $\left|\overrightarrow{r_{1}}\right|=\left|\overrightarrow{r_{2}}\right|=\mathrm{r}=1.0 \mathrm{~m}$ so we can say that $\widehat{r_{1}}=\overrightarrow{r_{1}} \& \widehat{r_{2}}=\overrightarrow{r_{2}}$
The net force on q is vector sum of the forces applied by q_{1} and q_{2}.
$\overrightarrow{F_{1}}=\mathrm{k} \frac{q_{1} q}{r_{1}{ }^{2}} \widehat{r_{1}}$
$\overrightarrow{F_{2}}=\mathrm{k} \frac{q_{2} q}{r_{2}{ }^{2}} \widehat{r_{2}}$
$\vec{F}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}$
$\vec{F}=\mathrm{k} \frac{q_{1} q}{r_{1}{ }^{2}} \widehat{r_{1}}+\mathrm{k} \frac{q_{2} q}{r_{2}{ }^{2}} \widehat{r_{2}}$
$\vec{F}=\left(9 \times 10^{9}\right) \frac{\left(1.0 \times 10^{-6}\right)\left(4.0 \times 10^{-6}\right)}{(1.0)^{2}}(0.60 \hat{\imath}+0.80 \hat{\jmath})+\left(9 \times 10^{9}\right) \frac{\left(1.0 \times 10^{-6}\right)\left(4.0 \times 10^{-6}\right)}{(1.0)^{2}}(0.60 \hat{\imath}-$ $0.80 \hat{\jmath})$
$\vec{F}=(0.036)(0.60 \hat{\imath}+0.80 \hat{\jmath})+(0.036)(0.60 \hat{\imath}-0.80 \hat{\jmath})=0.04 \hat{\imath} \mathrm{~N}$
$\overrightarrow{\boldsymbol{F}}=0.04 \hat{\imath} \mathrm{~N}$
Question 12.3:- A point charge $\mathrm{q}=-8.0 \times 10^{-8} \mathrm{C}$ is placed at the origin. Calculate electric field at a point 2.0 m from the origin on the z -axis.
Solution:- Charge $=\mathrm{q}=-8.0 \times 10^{-8} \mathrm{C}$
Distance $=r=2.0 \mathrm{~m}$
$\vec{E}=k \frac{q}{r^{2}} \hat{r}=\left(9 \times 10^{9}\right) \frac{\left(-8.0 \times 10^{-8}\right)}{(2.0)^{2}} \hat{k}$
$\overrightarrow{\boldsymbol{E}}=\left(-1.8 \times 10^{2} \widehat{\boldsymbol{k}}\right) \mathrm{N} \mathrm{C}^{-1}$
Question 12.4:- Determine the electric field at the position $\vec{r}=(4 \hat{\imath}+3 \hat{\jmath}) \mathrm{m}$ caused by a point charge $\mathrm{q}=5.0 \times 10^{-6} \mathrm{C}$ placed at the origin.
Solution:- Charge $=\mathrm{q}=5.0 \times 10^{-6} \mathrm{C}$
Position vector $=\vec{r}=(4 \hat{\imath}+3 \hat{\jmath}) \mathrm{m}$
Distance $=r=\sqrt{4^{2}+3^{2}}=5 \mathrm{~m}$
Unit vector $=\hat{r}=\frac{\vec{r}}{r}=\frac{4 \hat{\imath}+3 \hat{\jmath}}{5}$
$\vec{E}=k \frac{q}{r^{2}} \hat{r}=\left(9 \times 10^{9}\right) \frac{\left(5.0 \times 10^{-6}\right)}{(5)^{2}}\left(\frac{4 \hat{\imath}+3 \hat{\jmath}}{5}\right)=(360)(4 \hat{\imath}+3 \hat{\jmath})$
$\vec{E}=(1440 \hat{\imath}+1080 \hat{\jmath}) \mathrm{N} \mathrm{C}^{-1}$
Question 12.5:- Two point charges $q_{1}=-1.0 \times 10^{-6} \mathrm{C}$ and $q_{2}=+4.0 \times 10^{-6} \mathrm{C}$, are separated by a distance of 3.0 m . Find and justify the zero-field location.
Solution:- $\mathrm{q}_{1}=-1.0 \times 10^{-6} \mathrm{C}$
$\mathrm{q}_{2}=+4.0 \times 10^{-6} \mathrm{C}$
Distance $=3.0 \mathrm{~m}$
Suppose q_{1} and q_{2} are placed horizontally

x		$(3.0+\mathrm{x}) \mathrm{m}$	
P	P	\mathbf{O}	
	q_{1}	3.0 m	q_{2}

3.0 m apart as shown in figure. Electric field cannot be zero between these two opposite charges. It is zero either on a point left side of q_{1} or on right side of q_{2} because fields of both charges are in opposite direction on these points. In this case magnitude of q_{1} is less than q_{2}, therefore, zero-field location lies near q_{1} i.e. on left side of q_{1}.
Consider a point P on left side of q_{1} at a distance x . Electric fields due to q_{1} and q_{2} on this point are in opposite direction. The net electric field on this point will be zero if electric fields due to q_{1} and q_{2} on this point are equal in magnitude.
$\mathrm{E}_{1}=\mathrm{E}_{2}$
$k \frac{q_{1}}{r_{1}^{2}}=k \frac{q_{2}}{r_{2}^{2}}$
We can see that $\mathrm{r}_{1}=\mathrm{x}$ and $\mathrm{r}_{2}=3+\mathrm{x}$

$$
\frac{1.0 \times 10^{-6}}{x^{2}}=\frac{4.0 \times 10^{-6}}{(3+x)^{2}}
$$

Rearranging as $(3+x)^{2}=4 x^{2}$
$9+x^{2}+6 x=4 x^{2}$
$3 x^{2}-6 x-9=0$
$\mathrm{x}^{2}-2 \mathrm{x}-3=0$
$x^{2}-3 x+x-3=0$
$x(x-3)+1(x-3)=0$
$(x+1)(x-3)=0$
$x=-1.0 m \& 3.0 m$
We can choose $x=3.0 \mathrm{~m}$ as negative distance is neglected.
Electric field is zero at distance of 3.0 m on left side of q_{1}.
Question 12.6:- Find the electric field strength required to hold suspended a particle of mass $1.0 \times 10^{-6} \mathrm{~kg}$ and charge $1.0 \mu \mathrm{C}$ between two plates 10.0 cm apart.
Solution:- Mass $=\mathrm{m}=1.0 \times 10^{-6} \mathrm{~kg}$
Charge $=\mathrm{q}=1.0 \mu \mathrm{C}=1.0 \times 10^{-6} \mathrm{C}$
Distance $=\mathrm{d}=10.0 \mathrm{~cm}=0.1 \mathrm{~m}$
The particle will suspend if the magnitudes of gravitational force (weight) acting downwards will be equal to magnitude of electric force acting upwards.
$\mathrm{F}_{\mathrm{e}}=\mathrm{Fg}_{\mathrm{g}}$
$\mathrm{qE}=\mathrm{mg}$
$\mathrm{E}=\mathrm{mg} / q=\frac{\left(1.0 \times 10^{-6}\right)(9.8)}{\left(1.0 \times 10^{-6}\right)}$
$\mathrm{E}=9.8 \mathrm{~V} \mathrm{~m}^{-1}=9.8 \mathrm{~N} \mathrm{C}^{-1}$
Question 12.7:- A particle having a charge of 20 electrons on it falls through a potential difference of 100 volts. Calculate the energy acquired by it in electron volts (eV).

Solution:- Charge $=\mathrm{q}=20 \mathrm{e}$
Potential difference $=\Delta \mathrm{V}=100 \mathrm{~V}$
Energy $=W=q \Delta V=(20 e)(100 \mathrm{~V})$
$\mathrm{W}=2000 \mathrm{eV}$
$W=2.0 \times 10^{3} \mathrm{eV}$
Question 12.8:- In Millikan's experiment, oil droplets are introduced into the space between two flat horizontal plates, 5.00 mm apart. The plate voltage is adjusted to exactly 780 V so that droplet is held stationary. The plate voltage is switched off and the selected droplet is observed to fall a measured distance of 1.50 mm in 11.2 s . Given that the density of oil used is
$900 \mathrm{~kg} \mathrm{~m}^{-3}$, and the viscosity of air at the laboratory temperature is $1.80 \times 10^{-5} \mathrm{~N} \mathrm{~m}^{-2} \mathrm{~s}$, calculate a) The mass, and b) The charge on the droplet (Assume $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$)
Solution:- Distance between plates $=\mathrm{d}=5.00 \mathrm{~mm}=5.00 \times 10^{-3} \mathrm{~m}$
Potential difference $=\mathrm{V}=780 \mathrm{~V}$
Distance covered by falling particle $=S=1.50 \mathrm{~mm}=1.50 \times 10^{-3} \mathrm{~m}$
Time taken by particle $=\mathrm{t}=11.2 \mathrm{~s}$
Terminal velocity of particle $=\mathrm{vt}_{\mathrm{t}}=\mathrm{S} / \mathrm{t}=\left(1.50 \times 10^{-3}\right) / 11.2=1.34 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$
Density of oil $=\rho=900 \mathrm{~kg} \mathrm{~m}^{-3}$
Viscosity of air $=\eta=1.80 \times 10^{-5} \mathrm{~N} \mathrm{~m}^{-2} \mathrm{~s}$
$\mathrm{r}=\sqrt{\frac{9 \eta v_{t}}{2 \rho g}}=\sqrt{\frac{9 \times 1.80 \times 10^{-5} \times 1.33 \times 10^{-4}}{2 \times 900 \times 9.8}}=1.1 \times 10^{-6} \mathrm{~m}$
a) Mass of particle $=\mathrm{m}=\rho \mathrm{V}=\rho\left(\frac{4}{3} \pi r^{3}\right)=\frac{4}{3}(900)(3.14)\left(1.1 \times 10^{-6}\right)^{3}$
$\underline{m}=5.14 \times 10^{-15} \mathrm{~kg}$
b) Charge $=\mathrm{q}=\mathrm{mgd} / \mathrm{V}=\frac{\left(1.1 \times 10^{-6}\right)(9.8)\left(1.50 \times 10^{-3}\right)}{780}$
$\mathrm{q}=3.20 \times 10^{-19} \mathrm{C}$
Question 12.9:- A proton placed in a uniform electric field of $5000 \mathrm{~N} \mathrm{C}^{-1}$ directed to right is allowed to go a distance of 10.0 cm from A to B. Calculate (a) Potential difference between the two points (b) Work done by the field (c) The change in P.E. of proton (d) The change in K.E. of the proton (e) Its velocity (mass of proton is $1.67 \times 10^{-27} \mathrm{~kg}$)
Solution:- Electric field $=\mathrm{E}=5000 \mathrm{NC}$-1
Distance between A and $B=\Delta r=10.0 \mathrm{~cm}=0.1 \mathrm{~m}$
Charge on proton $=\mathrm{q}=\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
We know that $\mathrm{E}=-\frac{\Delta V}{\Delta r}$
(a) Potential difference between A and $B=\Delta V=-E \Delta r=-(5000)(0.1)$
$\Delta \mathrm{V}=-500 \mathrm{~V}$
Magnitude of potential difference $=|\Delta \mathrm{V}|=500 \mathrm{~V}$
(b) Work done by the field $=\mathrm{W}=\mathrm{q}|\Delta \mathrm{V}|=(1 \mathrm{e})(500 \mathrm{~V})=500 \mathrm{eV}$
(c) Change in P.E. of proton $=\Delta$ P.E. $=q \Delta V=(1 \mathrm{e})(-500 \mathrm{~V})=-500 \mathrm{eV}$
(d) Change in K.E. of proton $=\Delta$ K.E. $=\mathrm{W}=500 \mathrm{eV}$
(e) Velocity of proton $=v$
K.E. $=\frac{1}{2} \mathrm{~m} \mathrm{v}^{2}$
$\mathrm{v}=\sqrt{\frac{2 \text { K.E. }}{m}}=\sqrt{\frac{2\left(500 \times 1.6 \times 10^{-19}\right)}{\left(1.67 \times 10^{-27}\right)}}=3.097 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$

Question 12.10:- Using zero reference point at infinity, determine the amount by which a point charge of $4.0 \times 10^{-8} \mathrm{C}$ alters the electric potential at a point 1.2 m away, when (a) Charge is positive (b) Charge is negative.
Solution:- Magnitude of charge $=\mathrm{q}=4.0 \times 10^{-8} \mathrm{C}$
Distance $=r=1.2 \mathrm{~m}$
(a) Charge is positive
$\mathrm{V}=k \frac{q}{r}=\left(9 \times 10^{9}\right)\left(\frac{+4.0 \times 10^{-8}}{1.2}\right)=+300 \mathrm{~V}$
$\mathrm{V}=+3.0 \times 10^{2} \mathrm{~V}$
(b) Charge is negative
$\mathrm{V}=k \frac{q}{r}=\left(9 \times 10^{9}\right)\left(\frac{-4.0 \times 10^{-8}}{1.2}\right)=-300 \mathrm{~V}$
$\mathrm{V}=-3.0 \times 10^{2} \mathrm{~V}$
Question 12.11:- In Bohr's atomic model of hydrogen atom, the electron is in orbit around the nuclear proton at a distance of $5.29 \times 10^{-11} \mathrm{~m}$ with a speed of $2.18 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} .\left(\mathrm{e}=1.60 \times 10^{-19}\right.$ C, mass of electron $=9.10 \times 10^{-31} \mathrm{~kg}$). Find (a) The electric potential that a proton exerts at this distance (b) Total energy of the atom in eV (c) The ionization energy for the atom in eV .
Solution:- Distance $=r=5.29 \times 10^{-11} \mathrm{~m}$
Charge of proton $=q=e=1.60 \times 10^{-19} \mathrm{C}$
Charge of proton $=-\mathrm{e}=-1.60 \times 10^{-19} \mathrm{C}$
Mass of electron $=\mathrm{m}=9.10 \times 10^{-31} \mathrm{~kg}$
Speed of electron $=v=2.18 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
(a) Potential exerted by the proton $=\mathrm{V}=k \frac{q}{r}=\left(9 \times 10^{9}\right)\left(\frac{1.60 \times 10^{-19}}{5.29 \times 10^{-11}}\right)$
$\mathrm{V}=+27.20 \mathrm{~V}$
(b) K.E. $==\frac{1}{2} \mathrm{~m} \mathrm{v}^{2}==\frac{1}{2}\left(9.10 \times 10^{-31}\right)\left(2.18 \times 10^{6}\right)^{2}=21.6 \times 10^{-19} \mathrm{~J}$
K.E. $=\frac{21.6 \times 10^{-19}}{1.60 \times 10^{-19}} \mathrm{eV}=13.60 \mathrm{eV}$
P.E. $=$ Work done $=-e \mathrm{~V}=(-1 \mathrm{e})(27.20 \mathrm{~V})$
P.E. $=-27.20 \mathrm{eV}$

Total energy $=\mathrm{E}=$ K.E. + P.E. $=13.60 \mathrm{eV}+(-27.20 \mathrm{eV})$
$\mathrm{E}=-13.60 \mathrm{eV}$
(c) The minimum energy required to remove an electron from valence shell of atom is called ionization energy.
Ionization energy $=-($ Total energy of electron $)$
$E_{i}=-E=-(-13.60 \mathrm{eV})$

$\underline{E}_{i}=+13.60 \mathrm{eV}$

Question 12.12:- The electronic flash attachment for a camera contains a capacitor for storing the energy used to produce the flash. In one such unit, the potential difference between the plates of a $750 \mu \mathrm{~F}$ capacitor is 330 V . Determine the energy that is sued to produce the flash.
Solution:- Capacitance of the capacitor $=\mathrm{C}=750 \mu \mathrm{~F}=750 \times 10^{-6} \mathrm{~F}$
Potential difference between the plate of capacitor $=\mathrm{V}=330 \mathrm{~V}$
Energy stored in capacitor $=W=\frac{1}{2} C V^{2}=\frac{1}{2}\left(750 \times 10^{-6}\right)(330)^{2}$
$\mathrm{W}=40.8 \mathrm{I}$
Question 12.13:- A capacitor has a capacitance of $2.5 \times 10^{-8} \mathrm{~F}$. In the charging process, electrons are removed from one plate and placed on the other one. When the potential difference between the plates is 450 V , how many electrons have been transferred? ($\mathrm{e}=1.60$ $\mathrm{x} 10^{-19} \mathrm{C}$)
Solution:- Capacitance of the capacitor $=\mathrm{C}=2.5 \times 10^{-8} \mathrm{~F}$
Potential difference between the plate of capacitor $=V=450 \mathrm{~V}$
Charge on one plate of the capacitor $=\mathrm{Q}=\mathrm{CV}=\left(2.5 \times 10^{-8}\right)(450)=11.25 \times 10^{-8} \mathrm{C}$
Charge in terms of electrons $=\mathrm{Q}=$ ne
We can say that ne $=\mathbf{C V}$
$\mathrm{n}=\frac{C V}{e}=\frac{\left(2.5 \times 10^{-8}\right)(450)}{1.60 \times 10^{-19}}$
$\underline{\mathrm{n}}=7.0 \times 10^{13}$ electrons

