## CHAPTER NO. 6(FLUID DYNAMICS)

Question 6.1:- Certain globular protein particle has a density of $1246 \mathrm{~kg} \mathrm{~m}^{-3}$. It falls through pure water ( $\eta=8.0 \times 10^{-4} \mathrm{~N} \mathrm{~m}^{-2} \mathrm{~s}$ ) with a terminal speed of $3.0 \mathrm{~cm} \mathrm{~h}^{-1}$. Find the radius of the particle.

Solution:- Density of particle $=\rho=1246 \mathrm{~kg} \mathrm{~m}^{-3}$
Coefficient of viscosity of water $=\eta=8.0 \times 10^{-4} \mathrm{~N} \mathrm{~m}^{-2} \mathrm{~s}$
Terminal speed $=\mathrm{v}_{\mathrm{t}}=3.0 \mathrm{~cm} \mathrm{~h}^{-1}=3.0 \frac{0.01}{3600} \mathrm{~m} \mathrm{~s}^{-1}=8.33 \times 10^{-6} \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{r}^{2}=\frac{9 \eta v_{t}}{2 \rho g}$
$\mathrm{r}=\sqrt{\frac{9 \eta v_{t}}{2 \rho g}}=\sqrt{\frac{9\left(8.0 \times 10^{-4}\right)\left(8.33 \times 10^{-6}\right)}{2(1246)(9.8)}}$
$r=1.6 \times 10^{-6} \mathrm{~m}$
Question 6.2:- Water flows through a hose, whose internal diameter is 1 cm at a speed of 1 m $\mathrm{s}^{-1}$. What should be the diameter of the nozzle if the water is to emerge at $21 \mathrm{~m} \mathrm{~s}^{-1}$ ?

Solution:- Diameter at first point $=\mathrm{d}_{1}=1 \mathrm{~cm}=0.01 \mathrm{~m}$
Speed at first point $=\mathrm{v}_{1}=1 \mathrm{~m} \mathrm{~s}^{-1}$
Diameter at second point $=\mathrm{d}_{2}$
Speed at second point $=\mathrm{v}_{2}=21 \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{A}_{2} \mathrm{~V}_{2}=\mathrm{A}_{1} \mathrm{~V}_{1}$
$\mathrm{V} 2\left(\pi d_{2}^{2} / 4\right)=\mathrm{V}_{1}\left(\pi d_{1}^{2} / 4\right)$
$\mathrm{v}_{2} \mathrm{~d}_{2}{ }^{2}=\mathrm{v}_{1} \mathrm{~d}_{1}{ }^{2}$
(21) $\mathrm{d}_{2}{ }^{2}=(1)(0.01)^{2}$
$\mathrm{d}_{2}{ }^{2}=10^{-4} / 21$
$\mathrm{d}_{2}{ }^{2}=4.76 \times 10^{-6} \mathrm{~m}^{2}$
$\mathrm{d}_{2}=0.002 \mathrm{~m}$
$\mathrm{d}_{2}=2 \mathrm{~cm}$
Question 6.3:- The pipe near the lower end of a large water storage tank develops a small leak and a stream of water shoots from it. The top of water in the tank is 15 m above the point of leak.
a) With what speed the does the water rush from the hole?
b) If the hole has an area of $0.060 \mathrm{~cm}^{2}$, how much water flows out in one second?

Solution:- Height of water above the hole $=\mathrm{h}=15 \mathrm{~m}$
(a) The speed of ejection of water $=\mathrm{v}=\sqrt{2 g h}=\sqrt{2(9.8)(15)}$
$\mathrm{v}=17 \mathrm{~m} \mathrm{~s}^{-1}$
(b) Area of hole $=A=0.060 \mathrm{~cm}^{2}=0.060 \times 10^{-4} \mathrm{~m}^{2}$

Volume flow in one second $=\mathrm{A} \mathrm{v}=\left(0.060 \times 10^{-4}\right)(17)$
Volume flow in one second $=1.02 \times 10^{-4} \mathrm{~m}^{3}$
Volume flow in one second $=102 \times 10^{-6} \mathrm{~m}^{3}$
Volume flow in one second $=102 \mathrm{~cm}^{3}$
Question 6.4:- Water is flowing smoothly through a closed pipe system. At one point the speed of water is $3.0 \mathrm{~m} \mathrm{~s}^{-1}$, while at another point 3.0 m higher, the speed is $4.0 \mathrm{~m} \mathrm{~s}^{-1}$. If the pressure is 80 kPa at the lower point, what is the pressure at the upper point?
Solution:- Speed of water at lower point $=\mathrm{v}_{1}=3.0 \mathrm{~m} \mathrm{~s}^{-1}$
Height of water at lower point $=\mathrm{h}_{1}=0 \mathrm{~m}$
Pressure of water at lower point $=\mathrm{P}_{1}=80 \mathrm{kPa}=80000 \mathrm{~Pa}$
Speed of water at upper point $=\mathrm{v}_{2}=4.0 \mathrm{~m} \mathrm{~s}^{-1}$
Height of water at upper point $=h_{2}=3.0 \mathrm{~m}$
Density of pure water $=\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$
Pressure of water at upper point $=\mathrm{P}_{2}$
The Bernoulli's equation states that $P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g \mathrm{~h}_{2}$
$\mathrm{P}_{2}=\mathrm{P}_{1}+\rho \mathrm{g}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)+\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)$
$\mathrm{P}_{2}=80000+(1000)(9.8)(0-3)+\frac{1}{2}(1000)(9-16)$
$\mathrm{P}_{2}=80000-29400-3500=47100 \mathrm{~Pa}$

## $\underline{P}_{2}=47 \mathrm{kPa}$

Question 6.5:- An airplane wing is designed so that when the speed of air across the top of the wing is $450 \mathrm{~m} \mathrm{~s}^{-1}$, the speed of air below the wing is $410 \mathrm{~m} \mathrm{~s}^{-1}$. What is the pressure difference between the top and bottom of the wings? (Density of air $=1.29 \mathrm{~kg} \mathrm{~m}^{-3}$ )
Solution:- Speed of air on upper part of wing $=v_{1}=450 \mathrm{~m} \mathrm{~s}^{-1}$
Speed of air on lower part of wing $=\mathrm{v}_{2}=410 \mathrm{~m} \mathrm{~s}^{-1}$
Density of air $=\rho=1.29 \mathrm{~kg} \mathrm{~m}^{-3}$
Pressure difference between the bottom and the top $=P_{2}-P_{1}$
The Bernoulli's equation states that $\mathrm{P}_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho \mathrm{g} \mathrm{h}_{1}=\mathrm{P}_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho \mathrm{g} \mathrm{h}_{2}$
$\mathrm{P}_{2}-\mathrm{P}_{1}=\rho \mathrm{g}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)+\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)$
For horizontal flow of air, $h_{1}=h_{2}$ i.e, $h_{1}-h_{2}=0$
$\mathrm{P}_{2}-\mathrm{P}_{1}=\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)=\frac{1}{2}(1.29)\left[(450)^{2}-(410)^{2}\right]$
$\mathrm{P}_{2}-\mathrm{P}_{1}=(0.645)(34400)=22188 \mathrm{~Pa}$
$\underline{\mathrm{P}_{2}-\mathrm{P}_{1}=22 \mathrm{kPa}}$

Question 6.6:- The radius of aorta is about 1.0 cm and the blood flowing through it has a speed of about $30 \mathrm{~cm} \mathrm{~s}^{-1}$. Calculate the average speed of the blood in the capillaries using the fact that although each capillary has a diameter of about $8.0 \times 10^{-4} \mathrm{~cm}$, there are literally millions of them so that their total cross section is about $2000 \mathrm{~cm}^{2}$.

Solution:- Radius of aorta $=\mathrm{r}_{1}=1.0 \mathrm{~cm}=0.01 \mathrm{~m}$
Speed of blood through aorta $=\mathrm{v}_{1}=30 \mathrm{~cm} \mathrm{~s}^{-1}=0.30 \mathrm{~m} \mathrm{~s}^{-1}$
Area of cross section of aorta $=\mathrm{A}_{1}=\pi \mathrm{r}_{1}{ }^{2}=3.14(0.01)^{2}=3.14 \times 10^{-4} \mathrm{~m}^{2}$
Area of cross section of capillaries $=A_{2}=2000 \mathrm{~cm}^{2}=2000 \times 10^{-4} \mathrm{~m}^{2}$
Speed of blood in capillaries $=\mathrm{v}_{2}$
We can use equation of continuity as $\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$\left(3.14 \times 10^{-4}\right)(0.30)=\left(2000 \times 10^{-4}\right) \mathrm{v}_{2}$
$\mathrm{v}_{2}=(3.14)(0.30) / 2000=0.00047 \mathrm{~m} \mathrm{~s}^{-1}=4.7 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{v}_{2}=5 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$
Question 6.7:- How large must a heating duct be if air moving $3.0 \mathrm{~m} \mathrm{~s}^{-1}$ along it can replenish the air in a room of $300 \mathrm{~m}^{3}$ volume every 15 min ? Assume that the air's density remains constant.

Solution:- Speed of the air $=v=3.0 \mathrm{~m} \mathrm{~s}^{-1}$
Volume of the room $=V=300 \mathrm{~m}^{3}$
Time $=\mathrm{t}=15 \mathrm{~min}=900 \mathrm{~s}$
We know that $\mathrm{A} v=\mathrm{V} / \mathrm{t}$
$\pi r^{2}(\mathrm{v})=\mathrm{V} / \mathrm{t}$
$(3.14) r^{2}(3.0)=300 / 900$
$r^{2}=1 /(3)(3.0)(3.14)$
$\mathrm{r}^{2}=0.035 \mathrm{~m}^{2}$
$\mathrm{r}=0.188 \mathrm{~m}$
$\mathrm{r}=19 \mathrm{~cm}$
Question 6.8:- An airplane design calls for a "lift" due to the net force on the moving air on the wing of about $1000 \mathrm{~N} \mathrm{~m}^{-2}$ of wing area. Assume that air flows past the wing of an aircraft with streamline flow. If the speed of flow past the lower wing surface is $160 \mathrm{~m} \mathrm{~s}^{-1}$, what is the required speed over the upper surface to give a "lift" of $1000 \mathrm{~N} \mathrm{~m}^{-2}$ ? The density of air is 1.29 $\mathrm{kg} \mathrm{m}^{-3}$ and assume maximum thickness of the wing to be one metre.
Solution:- Speed of air pas the lower surface $=\mathrm{v}_{1}=160 \mathrm{~m} \mathrm{~s}^{-1}$
Density of air $=\rho=1.29 \mathrm{~kg} \mathrm{~m}^{-3}$
Pressure difference $=P_{1}-P_{2}=1000 \mathrm{Nm}^{-2}$

Thickness of wing $=\mathrm{h}_{2}-\mathrm{h}_{1}=1 \mathrm{~m}$
The Bernoulli's equation states that $P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g \mathrm{~h}_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho \mathrm{g} \mathrm{h}_{2}$
$\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)+\rho \mathrm{g}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)+\frac{1}{2} \rho v_{1}^{2}=\frac{1}{2} \rho v_{2}^{2}$
$\frac{1}{2}(1.29) v_{2}^{2}=1000+(1.29)(9.8)(1)+\frac{1}{2}(1.29)(160)^{2}$
$0.645 v_{2}^{2}=1000+11.61+16512$
$0.645 v_{2}^{2}=17523.61$
$v_{2}^{2}=27168.39 \mathrm{~m}^{2} \mathrm{~s}^{-2}$
$\mathrm{v} 2=164.8 \mathrm{~m} \mathrm{~s}^{-1}$
$\mathbf{v}_{2}=165 \mathrm{~m} \mathrm{~s}^{-1}$
Question 6.9:- What gauge pressure is required in the city mains for a stream from a fire hose connected to the mains to reach a vertical height of 15.0 m ?
Solution:- Density of water $=\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$
Gauge pressure $=P=P_{2}-P_{1}$
Vertical height $=\mathrm{h}=\mathrm{h}_{1}-\mathrm{h}_{2}=15.0 \mathrm{~m}$
The Bernoulli's equation states that $P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g \mathrm{~h}_{2}$
$\mathrm{P}_{2}-\mathrm{P}_{1}=\rho \mathrm{g}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)+\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)$
$\mathrm{P}_{2}-\mathrm{P}_{1}=\rho \mathrm{g}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right) \quad \therefore \frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)=0$ as speed remains same everywhere in mains
$\mathrm{P}_{2}-\mathrm{P}_{1}=(1000)(9.8)(15.0)$
$\mathrm{P}_{2}-\mathrm{P}_{1}=147000 \mathrm{~Pa}$
$\mathrm{P}=\mathrm{P}_{2}-\mathrm{P}_{1}=1.47 \times 10^{5} \mathrm{~Pa}$

