Numerical Problems

CHAPTER NO. 6(FLUID DYNAMICS)

Question 6.1:- Certain globular protein particle has a density of 1246 kg m⁻³. It falls through pure water ($\eta = 8.0 \text{ x } 10^{-4} \text{ N } \text{m}^{-2} \text{ s}$) with a terminal speed of 3.0 cm h⁻¹. Find the radius of the particle.

Solution:- Density of particle = $\rho = 1246$ kg m⁻³

Coefficient of viscosity of water = $\eta = 8.0 \times 10^{-4} \text{ N m}^{-2} \text{ s}$

Terminal speed =
$$v_t$$
 = 3.0 cm h⁻¹ = 3.0 $\frac{0.01}{3600}$ m s⁻¹ = 8.33 x 10⁻⁶ m s⁻¹

$$r^{2} = \frac{9 \eta v_{t}}{2 \rho g}$$
$$r = \sqrt{\frac{9 \eta v_{t}}{2 \rho g}} = \sqrt{\frac{9 (8.0 \times 10^{-4}) (8.33 \times 10^{-6})}{2 (1246) (9.8)}}$$

 $r = 1.6 \times 10^{-6} m$

Question 6.2:- Water flows through a hose, whose internal diameter is 1 cm at a speed of 1 m s⁻¹. What should be the diameter of the nozzle if the water is to emerge at 21 m s⁻¹?

Solution:- Diameter at first point $= d_1 = 1 \text{ cm} = 0.01 \text{ m}$ notest

Speed at first point = $v_1 = 1 \text{ m s}^{-1}$

Diameter at second point $= d_2$

Speed at second point = $v_2 = 21 \text{ m s}^{-1}$

 $A_2 v_2 = A_1 v_1$ $v_2(\pi d_2^2/4) = v_1(\pi d_1^2/4)$ $v_2 d_2^2 = v_1 d_1^2$ $(21) d_{2^2} = (1)(0.01)^2$ $d_{2^2} = 10^{-4}/21$

 $d_{2^2} = 4.76 \text{ x } 10^{-6} \text{ m}^2$

 $d_2 = 0.002 \text{ m}$

 $d_2 = 2 \text{ cm}$

Question 6.3:- The pipe near the lower end of a large water storage tank develops a small leak and a stream of water shoots from it. The top of water in the tank is 15 m above the point of leak.

a) With what speed the does the water rush from the hole?

b) If the hole has an area of 0.060 cm², how much water flows out in one second?

2254

Solution:- Height of water above the hole = h = 15 m

(a) The speed of ejection of water = $v = \sqrt{2 g h} = \sqrt{2 (9.8)(15)}$

 $v = 17 \text{ m s}^{-1}$

Physics

Numerical Problems (b) Area of hole = $A = 0.060 \text{ cm}^2 = 0.060 \text{ x} 10^{-4} \text{ m}^2$ Volume flow in one second = $Av = (0.060 \times 10^{-4})(17)$ Volume flow in one second = $1.02 \times 10^{-4} \text{ m}^3$ Volume flow in one second = $102 \times 10^{-6} \text{ m}^3$ Volume flow in one second = 102 cm^3 Question 6.4:- Water is flowing smoothly through a closed pipe system. At one point the speed of water is 3.0 m s⁻¹, while at another point 3.0 m higher, the speed is 4.0 m s⁻¹. If the pressure is 80 kPa at the lower point, what is the pressure at the upper point? **Solution:-** Speed of water at lower point = $v_1 = 3.0 \text{ m s}^{-1}$ Height of water at lower point $= h_1 = 0$ m Pressure of water at lower point = $P_1 = 80 \text{ kPa} = 80000 \text{ Pa}$ Speed of water at upper point = $v_2 = 4.0 \text{ m s}^{-1}$ Height of water at upper point = $h_2 = 3.0 \text{ m}$ Density of pure water = $\rho = 1000$ kg m⁻³ Pressure of water at upper point = P_2 The Bernoulli's equation states that $P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$ $P_2 = P_1 + \rho g (h_1 - h_2) + \frac{1}{2} \rho (v_1^2 - v_2^2)$ $P_2 = 80000 + (1000) (9.8) (0 - 3) + \frac{1}{2} (1000) (9 - 16)$ $P_2 = 80000 - 29400 - 3500 = 47100 \text{ Pa}$ $P_2 = 47 \text{ kPa}$ Question 6.5:- An airplane wing is designed so that when the speed of air across the top of the wing is 450 m s⁻¹, the speed of air below the wing is 410 m s⁻¹. What is the pressure difference between the top and bottom of the wings? (Density of air = 1.29 kg m^{-3}) **Solution:-** Speed of air on upper part of wing $= v_1 = 450$ m s⁻¹ Speed of air on lower part of wing = $v_2 = 410 \text{ m s}^{-1}$ Density of air = $\rho = 1.29$ kg m⁻³ Pressure difference between the bottom and the top = $P_2 - P_1$ The Bernoulli's equation states that $P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$ $P_2 - P_1 = \rho g (h_1 - h_2) + \frac{1}{2} \rho (v_1^2 - v_2^2)$ For horizontal flow of air, $h_1 = h_2$ i.e, $h_1 - h_2 = 0$

 $P_2 - P_1 = \frac{1}{2}\rho (v_1^2 - v_2^2) = \frac{1}{2}(1.29) [(450)^2 - (410)^2]$ $P_2 - P_1 = (0.645) (34400) = 22188 Pa$ <u> $P_2 - P_1 = 22 \text{ kPa}$ </u>

Numerical Problems

Question 6.6:- The radius of aorta is about 1.0 cm and the blood flowing through it has a speed of about 30 cm s⁻¹. Calculate the average speed of the blood in the capillaries using the fact that although each capillary has a diameter of about 8.0 x 10^{-4} cm, there are literally millions of them so that their total cross section is about 2000 cm².

Solution:- Radius of aorta = $r_1 = 1.0$ cm = 0.01 m

Speed of blood through aorta = $v_1 = 30$ cm s⁻¹ = 0.30 m s⁻¹

Area of cross section of aorta = $A_1 = \pi r_1^2 = 3.14 (0.01)^2 = 3.14 \times 10^{-4} m^2$

Area of cross section of capillaries = $A_2 = 2000 \text{ cm}^2 = 2000 \text{ x} 10^{-4} \text{ m}^2$

Speed of blood in capillaries = v_2

We can use equation of continuity as $A_1 v_1 = A_2 v_2$

 $(3.14 \times 10^{-4}) (0.30) = (2000 \times 10^{-4}) v_2$

 $v_2 = (3.14)(0.30)/2000 = 0.00047 \text{ m s}^{-1} = 4.7 \text{ x} 10^{-4} \text{ m s}^{-1}$

 $v_2 = 5 \ge 10^{-4} \le m \le 10^{-1}$

Question 6.7:- How large must a heating duct be if air moving 3.0 m s⁻¹ along it can replenish As: easility for the second se the air in a room of 300 m³ volume every 15 min? Assume that the air's density remains constant.

Solution:- Speed of the air = $v = 3.0 \text{ m s}^{-1}$

Volume of the room = $V = 300 \text{ m}^3$ Time = t = 15 min = 900 sWe know that A v = V/t $\pi r^2 (v) = V/t$ $(3.14) r^2 (3.0) = 300/900$

 $r^2 = 1/(3)(3.0)(3.14)$

 $r^2 = 0.035 m^2$

r = 0.188 m

r = 19 cm

Question 6.8:- An airplane design calls for a "lift" due to the net force on the moving air on the wing of about 1000 N m⁻² of wing area. Assume that air flows past the wing of an aircraft with streamline flow. If the speed of flow past the lower wing surface is 160 m s⁻¹, what is the required speed over the upper surface to give a "lift" of 1000 N m⁻²? The density of air is 1.29 kg m⁻³ and assume maximum thickness of the wing to be one metre.

Solution:- Speed of air pas the lower surface $= v_1 = 160 \text{ m s}^{-1}$

Density of air = $\rho = 1.29$ kg m⁻³

Pressure difference = $P_1 - P_2 = 1000 \text{ N} \text{ m}^{-2}$

Numerical Problems

Physics

Thickness of wing $= h_2 - h_1 = 1 m$

The Bernoulli's equation states that $P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$

$$(P_1 - P_2) + \rho g (h_1 - h_2) + \frac{1}{2} \rho v_1^2 = \frac{1}{2} \rho v_2^2$$

$$\frac{1}{2}(1.29) v_2^2 = 1000 + (1.29)(9.8)(1) + \frac{1}{2}(1.29)(160)^2$$

 $0.645 \ v_2^2 = 1000 + 11.61 + 16512$

$$0.645 v_2^2 = 17523.61$$

$$v_2^2 = 27168.39 \text{ m}^2 \text{ s}^{-2}$$

 $v_2 = 164.8 \text{ m s}^{-1}$

$$v_2 = 165 \text{ m s}^{-1}$$

Question 6.9:- What gauge pressure is required in the city mains for a stream from a fire hose connected to the mains to reach a vertical height of 15.0 m?

Solution:- Density of water = $\rho = 1000$ kg m⁻³

Gauge pressure = $P = P_2 - P_1$

Vertical height = $h = h_1 - h_2 = 15.0 \text{ m}$

The Bernoulli's equation states that $P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$

$$P_2 - P_1 = \rho g (h_1 - h_2) + \frac{1}{2} \rho (v_1^2 - v_2^2)$$

 $P_2 - P_1 = \rho g (h_1 - h_2)$ $\therefore \frac{1}{2} \rho (v_1^2 - v_2^2) = 0$ as speed remains same everywhere in mains

 $P_2 - P_1 = (1000)(9.8)(15.0)$ $P_2 - P_1 = 147000 Pa$ $P = P_2 - P_1 = 1.47 \times 10^5 Pa$