CHAPTER NO.1(MEASUREMENTS)

Question 1.1:- A light year is the distance light travels in one year. How many metres are there in one light year: (speed of light $=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$).

Solution:- Speed of light $=\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Time $=\mathrm{t}=1$ year $=365$ days $=365 \times 24$ hours $=365 \times 24 \times 60 \mathrm{mints}=365 \times 24 \times 60 \times 60 \mathrm{~s}$ $\mathrm{t}=31,536,000 \mathrm{~s}=3.1536 \times 10^{7} \mathrm{~s}$

Distance $=\mathrm{S}=$ Speed \times Time $=\mathrm{c} x \mathrm{t}=\left(3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right) \times\left(3.1536 \times 10^{7} \mathrm{~s}\right)=9.4608 \times 10^{15} \mathrm{~m}$ One light year $=9.5 \times 10^{15} \mathrm{~m}$ (rounded off to two significant figures)

Question 1.2:- a) How many seconds are there in 1 year?
b) How many nanoseconds in 1 year?
c) How many years in 1 second?

Solution:- a) Time $=\mathrm{t}=1$ year $=365$ days $=365 \times 24$ hours $=365 \times 24 \times 60$ minutes $=365 \times$ $24 \times 60 \times 60 \mathrm{~s}$

1 year $=31,536,000 \mathrm{~s}=3.1536 \times 10^{7} \mathrm{~s}$
b) Time $=\mathrm{t}=1$ year $=365$ days $=365 \times 24$ hours $=365 \times 24 \times 60$ minutes $=365 \times 24 \times 60 \times$ 60 s

1 year $=31,536,000 \mathrm{~s}=3.1536 \times 10^{7} \mathrm{~s}$
We know that $1 \mathrm{~ns}=10^{-9} \mathrm{~s}$
Rearranging gives $1 \mathrm{~s}=10^{9} \mathrm{~s}$
1 year $=3.1536 \times 10^{7} \times 10^{9} \mathrm{~ns}=3.1536 \times 10^{16} \mathrm{~ns}$
c) We have already calculated number of seconds in 1 year as under:-

1 year $=3.1536 \times 10^{7} \mathrm{~s}$
Divide both sides by 3.1536×10^{7}
$1 \mathrm{~s}=\frac{1 \text { year }}{3.1536 \times 10^{7}}=0.31 \times 10^{-7}$ year $=3.1 \times 10^{-8}$ year
$1 \mathrm{~s}=3.1 \times 10^{-8}$ year
Question 1.3:- The length and width of a rectangular plate are measured to be 15.3 cm and 12.80 cm , respectively. Find the area of the plate.

Solution:- Length $=\mathrm{L}=15.3 \mathrm{~cm}$
Width $=W=12.80 \mathrm{~cm}$
Area $=A=$ Length \times Width $=\mathrm{L} \times \mathrm{W}=(15.3 \mathrm{~cm}) \times(12.80 \mathrm{~cm})=195.84 \mathrm{~cm}^{2}$
Area $=A=196 \mathrm{~cm}^{2}$ (rounded off to three significant figures)
Question 1.4:- Add the following masses given in kg upto appropriate precision. 2.189, 0.089, 11.8 and 5.32.

Solution:- $\mathrm{m}_{1}=2.189 \mathrm{~kg}$
$\mathrm{m}_{2}=0.089 \mathrm{~kg}$
$\mathrm{m}_{3}=11.8 \mathrm{~kg}$
$\mathrm{m}_{4}=5.32 \mathrm{~kg}$
$\mathrm{M}=\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4}=2.189+0.089+11.8+5.32=19.398 \mathrm{~kg}$

$\mathrm{M}=19.4 \mathrm{~kg}$ (only one digit will retained after decimal point)

Question 1.5:- Find the value of ' g ' and its uncertainty using $T=2 \pi \sqrt{\frac{l}{g}}$ from the following measurements made during an experiment

Length of simple pendulum $=\mathrm{l}=100 \mathrm{~cm}$
Time for 20 vibrations $=40.2 \mathrm{~s}$
Length was measured by a metre scale of accuracy upto 1 mm and time by stop watch of accuracy upto 0.1 s .

Solution:- $T=2 \pi \sqrt{\frac{l}{g}}$
Squaring both sides of $\mathrm{T}=2 \pi \sqrt{\frac{l}{g}}$ and rearranging gives $\mathrm{g}=4 \pi^{2} \frac{l}{T^{2}}$
Time for 20 vibrations $=\mathrm{t}=40.2 \mathrm{~s}$
Number of vibrations $=\mathrm{n}=20$
Time period $=\mathrm{T}=t / n=40.2 / 20=2.01 \mathrm{~s}$
Uncertainty in time $=\Delta \mathrm{t}=0.1 \mathrm{~s}$
Uncertainty in time period $=\Delta \mathrm{T}=\Delta \mathrm{t} / \mathrm{n}=0.1 / 20=0.005 \mathrm{~s}$
Length of simple pendulum $=1=100 \mathrm{~cm}=1 \mathrm{~m}$
Uncertainty in length $=\Delta \mathrm{l}=1 \mathrm{~mm}=0.001 \mathrm{~m}$
$\mathrm{g}=4(3.14)^{2} \frac{1}{(2.01)^{2}}=9.76 \mathrm{~m} \mathrm{~s}^{-2}$
Percentage error of length $=\frac{\Delta l}{l} \times 100 \%=\frac{0.001}{1} \times 100 \%=0.1 \%$
Percentage error of time period $=\frac{\Delta T}{T} \times 100 \%=\frac{0.005}{2.01} \times 100 \%=0.25 \%$
Percentage error of $g=($ Percentage error of length $)+2($ Percentage error of time period $)$
Percentage error of $g=(0.1 \%)+2(0.25 \%)=0.6 \%$
Absolute error of $\mathrm{g}=\frac{\text { Percentage error of } g}{100} \times$ Value of $\mathrm{g}=\frac{0.6}{100} \times 9.76=0.06 \mathrm{~m} \mathrm{~s}^{-2}$
$\mathrm{g}=(9.76+0.06) \mathrm{m} \mathrm{s}^{-2}$
Question 1.6:- What are the dimensions and units of gravitational constant G in the formula F $=\mathrm{G} \frac{m_{1} m_{2}}{r^{2}}$?

Solution:- Given that $\mathrm{F}=\mathrm{G} \frac{m_{1} m_{2}}{r^{2}}$
$\mathrm{G}=\mathrm{F} \frac{r^{2}}{m_{1} m_{2}}$
Unit of $\mathrm{G}=\frac{(\text { Unit of } F)(\text { Unit of } r)^{2}}{\left(\text { Unit of } m_{1}\right)\left(\text { Unit of } m_{2}\right)}=\frac{(N)(\mathrm{m})^{2}}{(\mathrm{~kg})(\mathrm{kg})}$
Unit of $\mathrm{G}=\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
Dimension of $\mathrm{G}=[\mathrm{G}]=\frac{[F]\left[r^{2}\right]}{\left[m_{1} m_{2}\right]}=\frac{\left[\mathrm{MLT} T^{-2}\right]\left[L^{2}\right]}{\left[M^{2}\right]}$
Dimension of $G=[G]=\left[M^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
Question 1.7:- Show that the expression $\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+$ at is dimensionally correct, where v_{i} is the velocity at $t=0$, a is the acceleration and v_{f} is the velocity at time t.

Solution:- According to principle of homogeneity of dimensions, an equation is correct dimensionally if dimensions of quantities on both sides of the equation are same.

Given equation $v_{f}=v_{i}+$ at contains three terms i.e. $\mathrm{vf}_{\mathrm{f}} \mathrm{v}_{\mathrm{i}}$ and at.
Dimension of $v_{f}=\left[v_{f}\right]=\left[\mathrm{L} \mathrm{T}^{-1}\right]$
Dimension of $v_{i}=\left[v_{i}\right]=\left[\mathrm{L} \mathrm{T}^{-1}\right]$
Dimension of at $=[\mathrm{at}]=\left[\mathrm{L} \mathrm{T}^{-2}\right][\mathrm{T}]=\left[\mathrm{L} \mathrm{T}^{-1}\right]$
It is clear that all the terms in the equation $v_{f}=v_{i}+$ at have same dimensions, so equation is correct dimensionally.
Question 1.8:- The speed v of sound waves through a medium may be assumed to depend on
(a) the density ρ of the medium and (b) its modulus of elasticity E which is the ratio of stress to strain. Deduce by the method of dimensions, the formula for the speed of sound.

Solution:- Dimension of speed $=[\mathrm{v}]=\left[\mathrm{L} \mathrm{T}^{-1}\right]$
Dimension of density $=[\rho]=\frac{\text { Dimension of mass }}{\text { Dimension of volume }}=\frac{[M]}{\left[L^{3}\right]}=\left[\mathrm{M} \mathrm{L}^{-3}\right]$
Dimension of modulus of elasticity $=[\mathrm{E}]=\frac{\text { Dimension of stress }}{\text { Dimension of strain }}$
$=\frac{\text { Dimension of force } / \text { Dimension of area }}{\text { Dimension of volume } / \text { Dimension of change in volume }}=\frac{\left[M L T^{-2}\right] /\left[L^{2}\right]}{\left[L^{3}\right] /\left[L^{3}\right]}=\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}\right]$
Given that $v \alpha \rho^{a} E^{b}$
$\mathrm{v}=$ Constant $\rho^{\mathrm{a}} \mathrm{E}^{\mathrm{b}}$
Using dimensional analysis, we can apply dimensions on both sides of above equation as under:-
$[\mathrm{v}]=[\rho]^{\mathrm{a}}[\mathrm{E}]^{\mathrm{b}} \quad \therefore$ Constant appearing in dimensional analysis is always dimensionless
$\left[\mathrm{L} \mathrm{T}^{-1}\right]=\left[\mathrm{M} \mathrm{L}^{-3}\right]{ }^{\mathrm{a}}\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}\right]^{\mathrm{b}}$
$\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{-1}\right]=[\mathrm{M}]^{\mathrm{a}+\mathrm{b}}\left[\mathrm{L}^{-1}\right]^{-3 \mathrm{ab}}[\mathrm{T}]^{-2 \mathrm{~b}}$
Comparing powers of M, L and T on both sides gives:-

Power of M: $\quad 0=a+b$
Rearranging gives $\mathrm{a}=-\mathrm{b}$
Power of L: $\quad 1=-3 a-2 b$
Power of T: $\quad-1=-2 b$
Rearranging Eq. (3) gives $\mathbf{b}=\frac{\mathbf{1}}{\mathbf{2}}$
Putting the value of b from Eq. (3) in Eq. (2) gives $a=-\frac{1}{2}$
Put values of a and b in Eq. (1) gives $\mathrm{v}=$ Constant $\rho^{-\frac{1}{2}} E^{\frac{1}{2}}$
$\mathrm{v}=$ Constant $\frac{E^{\frac{1}{2}}}{\rho^{\frac{1}{2}}}$
$\mathrm{v}=$ Constant $\sqrt{\frac{E}{\rho}}$
Question 1.9:- Show that the famous "Einstein equation" $\mathrm{E}=\mathrm{mc}^{2}$ is dimensionally consistent.
Solution:- $\mathrm{E}=\mathrm{m} \mathrm{c}^{2}$
L.H.S. of equation is energy, which can be found by multiplying force with displacement.

Dimension of $E=[E]=[F][d]=\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-2}\right][\mathrm{L}]=\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
R.H.S. of equation is product of mass with square of speed of light.

Dimension of $\mathrm{m} \mathrm{c}^{2}=\left[\mathrm{m} \mathrm{c}^{2}\right]=[\mathrm{M}]\left[\mathrm{L} \mathrm{T}^{-1}\right]^{2}=\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
Dimension of L.H.S. $=$ Dimension of R.H.S.
The famous "Einstein equation" is dimensionally consistent.
Question 1.10:- Suppose, we are told that the acceleration of a particle moving in a circle of radius r with uniform speed v is proportional to some power of r, say r^{n}, and some power of v, say v^{m}, determine the powers of r and v ?
Solution:- Dimension of acceleration $=[\mathrm{a}]=\left[\mathrm{L} \mathrm{T}^{-2}\right]$
Dimension of radius $=[r]=[\mathrm{L}]$
Dimension of speed $=[\mathrm{v}]=\left[\mathrm{L} \mathrm{T}^{-1}\right]$
Given that a $\alpha \mathrm{r}^{\mathrm{n}} \mathrm{v}^{\mathrm{m}}$
$\mathrm{a}=$ Constant $\mathrm{r}^{\mathrm{n}} \mathrm{V}^{\mathrm{m}}$
Using dimensional analysis, we can apply dimensions on both sides of above equation as under:-
$[\mathrm{a}]=[\mathrm{r}]^{\mathrm{n}}[\mathrm{v}]^{\mathrm{m}} \quad \therefore$ Constant appearing in dimensional analysis is always dimensionless
$\left[\mathrm{L} \mathrm{T}^{-2}\right]=[\mathrm{L}]^{\mathrm{n}}\left[\mathrm{L} \mathrm{T}^{-1}\right]^{\mathrm{m}}$
$\left[\mathrm{L} \mathrm{T}^{-2}\right]=[\mathrm{L}]^{\mathrm{n}+\mathrm{m}}[\mathrm{T}]^{-\mathrm{m}}$
Comparing powers of L and T on both sides gives:-
Power of $\mathrm{L}: \quad 1=\mathrm{n}+\mathrm{m}$

Power of T:
$-2=-m$
Eq. (3)
Rearranging Eq. (3) gives $\mathbf{m}=2$
After putting the value of m from Eq. (3) in Eq. (2) gives $n=1-2=-1$.

$\underline{n}=-1, m=-2$

