#### **Linear Inequalities in one variable:**

The inequalities of the form ax + b < 0, ax + b > c

 $ax + b \ge c$  and  $ax + by \le c$  are called linear

inequalities

In one variable.

#### Linear inequalities in two variables:

The inequalities of the form ax + by + c, ax + b > c and  $ax + by \ge c$  and  $ax + by \le 0$  are called linear inqualities in two variables ca and y where a, b and c are constants.

#### **Corresponding Equation/ associated Equation:**

- (i) The corresponding equation to nay inequality is an equation formed by replacing the inequality symbol with an equal sign. For example Corresponding equation of x + 2y < 6 is
- x+2y=6 (ii) Corresponding equations of  $x \ge 0$  and  $2x+y \ge 2$  are x=0 and 2x+y=2 Respectively.

# Graphing of a linear inequalities in two variables:

- The corresponding equation is useful for graphing inequalities, because this equation forms the boundary line to the graph of given inequality.
- ii. A vertical line (line  $||to\ y\ axis$ ) divides the xy plane into two regions called half plane (left half plane x

$$-axis (x \le 0)$$
 and right half plane  $x \ge 0$ 

iii. A non- vertical line (line ||to x - axis) divides

 $xy\ plane$  in two regions called "half planes". (Upper half plane  $x \ge 0$  and lower half plane x

≤ 0

- iv. If the inequality is strict (< or >) then we draw dashed or broken boundary line.
- v. If the inequality is non-strict ( $\leq or \geq then$  we draw a solid boundary line.

# Procedure for graphing a linear inequality in two variables:

- Graph the corresponding equation of given inequality.
- ii. Select any test point(not on the graph of corresponding equation of inequality)

  The region (0,0)is most convenient point to choose as a test pt.

- iii. Put the coordinates of the test pt.in the inequality.
- iv. If the test point satisfied the given inequality, then shade the half plane containing the test point.
- v. If the test point does not satisfied the given inequality then the shade the half plane that does not contain the test point.

#### Solution set of linear inequalities:

The ordered pair (a, b) which satisfy the linear inequality in two variables x and y form the solution.

#### **Solution Region:**

Solution region of system of inequalities is the common region that satisfies all given inequality in the system.

#### Corner point / vertex:

A point of the solution region where two of its boundary lines intersect is called the corner point or vertex of the solution region.

# Exercise 5.1

- 1. Graph the solution of each of the following linear inequality in xy plane.
- (i)  $2x + y \le 6$

#### **Solution:**

$$2x + y \le 6 \to (i)$$

The associated eq. of (i) is  $2x + y = 6 \rightarrow (ii)$ 

$$(ii) \Rightarrow putx = 0, y = 6 \text{ so that pt.} (0,6)$$

Put 
$$y = 0, x = 3$$
 so that pt. (3,0)

Test 
$$pt(0,0)$$
: We test (i)at (0,0)

$$(i) \Rightarrow 0 \leq 6 \rightarrow true$$

(ii) 
$$3x + 7y \ge 21$$
  
Solution:

$$3x + 7y \ge 21 \rightarrow (i)$$

The associated eq. of (i) is 3x + 7y = 21

$$(ii) \Rightarrow Putx = 0 \ y = 3 \ so \ that \ pt(0,3)$$

$$\Rightarrow$$
 put  $y = 0$   $x = 7$  so pt(7,0)

Test pt(0,0) we test (i)at (0,0)

$$(i) \Rightarrow 0 \geq 21 \rightarrow false.$$



(iii)  $3x - 2y \ge 6$ 

**Solution:** 

$$3x - 2y \ge 6 \rightarrow (i)$$
the associatd eq.of (i) is  $3x - 2y = 6$ 
(ii)  $\Rightarrow$  put  $x = 0, y = -3$  so the pt.  $(o, -3)$ 
put  $y = 0, x = 2$  so the pt.  $(2,0)$ 
Test pt $(0,0)$ : We test (i) at  $(o,o)$  so



(iv)  $5x - 4y \le 20$ **Solution:** 

$$5x - 4y \le 20 \to (i)$$

The associated eq. of (i) is  $5x - 4y = 20 \rightarrow (ii)$  $(ii) \Rightarrow Put \ x = 0, y =$ -5 so the pt(0,-5)put y = 0, x = 4 so the pt(4, o)

Test pt(o, o): we test (i)at (0,0)so

$$(i) \Rightarrow 0 \leq 20 \rightarrow true$$



 $2x + 1 \ge 0 \rightarrow (i)$ 

The associated eq. of (i) is 2x + 1 = 0

$$\Rightarrow 2x = -1 \Rightarrow x$$

$$=-\frac{1}{2}(line \mid |to y - axis passing)$$

Through  $\left(-\frac{1}{2},0\right)$ 

Test pt(0,0): we test (i)at (0,0) so

$$(i) \Rightarrow 2(0) + 1 \ge 0 \Rightarrow 1 \ge 0 \rightarrow true$$



(vi)  $3y - 4 \le 0$ 

**Solution:** 

$$3y - 4 \le 0 \rightarrow (i)$$

The associated eq. of (i) is 3y - 4 = 0

$$\Rightarrow 3y = 4 \Rightarrow y = \frac{4}{3}$$
 (line ||to x - axis passing

Through  $(0,\frac{4}{3})$ 

Test pt(0,0): we test (i)at (0,0) so

$$(i) \Rightarrow 3(0) - 4 \le 0 \Rightarrow -4 \le 0 \rightarrow true$$



Question N0.2

Indicate the solution set of the following systems of linear inequalities of shading:

(i) 
$$2x - 3y \le 6$$
  
 $2x + 3y \le 12$ 

**Solution:** 

$$2x - 3y \le 6 \rightarrow (i)$$
$$2x + 3y \le 12 \rightarrow (ii)$$

the associated eqs. of (i)and (ii)are  $l_1$ ;  $2x - 3y = 6 \rightarrow (iii)l_2$ ;  $2x + 3y = 12 \rightarrow (iv)$ 

$$(iii) \Rightarrow putx = 0, y = -2 \text{ so the } pt(0, -2)$$

put 
$$y = 0, x = 3$$
 so the pt(3,0)

$$put y = 0, x = 3 \text{ so the } pt(3,0)$$
$$(iv) \Rightarrow putx = 0, y = 4 \text{ so the } pt(0,4)$$

put y = 0, x = 6 so the pt(6,0)

Test pt(0,0): we test (i)and (ii)at (0,0)so

$$(i)$$
 ⇒  $o \le 6$  →  $true$ 

$$(ii) \Rightarrow 0 \leq 12 \rightarrow true$$

The solution of the given is intersection of the graphs of (i) and (ii). so solution region is shaded area as shown in fig.



**Solution:** 

$$x + y \to (i)$$
$$-y + x \le 1 \to (ii)$$

the associated eqs. of (i) and (ii) are  $l_1$ ;  $x + y \rightarrow (iii)l_2$ ;  $-y + x \le 1 \rightarrow (iv)$  (iii)  $\Rightarrow putx = 0, y = 5$  so the pt(0,5) put y = 0, x = 5 so the pt(5,0) (iv)  $\Rightarrow putx = 0, y = -1$  so the pt(0,-1) put y = 0, x = 1 so the pt(1,0) Test pt(0,0): we test (i) and (ii) at (0,0) so

$$(i) \Rightarrow o \ge 5 \rightarrow true$$
  
 $(ii) \Rightarrow 0 \le 1 \rightarrow true$ 

#### **Solution region:**

The solution of the given is intersection of the graphs of (i) and (ii). so solution region is shaded area as shown in fig.



(iii) 
$$3x + 7y \ge 21$$
  
 $x - y \ge 2$ 

Solution:

$$3x + 7y \ge 21 \rightarrow (i)$$

$$x - y \ge 2 \rightarrow (ii)$$

the associated eqs. of (i) and (ii) are  $l_1$ ;  $3x + 7y \ge 21 \rightarrow (iii)l_2$ ;  $x - y \ge 2 \rightarrow (iv)$  (iii)  $\Rightarrow putx = 0, y = 3$  so the pt(0,3) put y = 0, x = 7 so the pt(7,0) (iv)  $\Rightarrow putx = 0, y = -2$  so the pt(0,-2) put y = 0, x = 2 so the pt(2,0) Test pt(0,0): we test (i) and (ii) at (0,0) so

$$(i) \Rightarrow 0 \ge 21 \rightarrow true$$
  
 $(ii) \Rightarrow 0 \le 2 \rightarrow true$ 

Solution region:

The solution of the given system of the graphs of (i) and (ii). so solution region is shaded area as shown in fig.



(iv) 
$$4x - 3y \le 12$$
 ,  $x \ge -\frac{3}{2}$ 

**Solution:** 

$$4x - 3y \le 12 \to (i)$$
$$x \ge -\frac{3}{2} \to (ii)$$

the associated eqs. of (i)and (ii)are

$$l_1; 4x - 3y = 12 \rightarrow (iii)l_2; x \ge -\frac{3}{2} \rightarrow (iv)$$

$$(iii) \Rightarrow putx = 0, y = -4 \text{ so the } pt(0, -4)$$

$$put y = 0, x = 3 \text{ so the } pt(3,0)$$

$$(iv) \Rightarrow putx = -\frac{3}{2}, (line | |to y - axis through)$$

$$pt\left(-\frac{3}{2},o\right)$$

Test pt(0,0): we test (i)and (ii)at (0,0)so

$$(i) \Rightarrow o \leq 12 \rightarrow true$$

$$(ii) \Rightarrow 0 \leq -\frac{3}{2} \rightarrow true$$

Solution region:

The solution of the given system is intersection of the graph of (i) and (ii). so solution region is shaded area as shown in fig.



(v)  $3x + 7y \ge 21$ ,  $y \le 4$ 

$$3x + 7y \ge 21 \to (i)$$
$$y \le 4 \to (ii)$$

the associated eqs. of (i) and (ii) are  $l_1$ ;  $3x + 7y = 21 \rightarrow (iii)l_2$ ;  $y = 4 \rightarrow (iv)$  (iii)  $\Rightarrow putx = 0, y = 3$  so the pt(0,3) put y = 0, x = 7 so the pt(7,0)

 $(iv) \Rightarrow put \ y = 4 \ (line \mid | to \ x - axis \ through \ pt(0,4)$ 

Test pt(0,0): we test (i)and (ii)at (0,0)so

$$(i) \Rightarrow o \ge 21 \rightarrow false$$
  
 $(ii) \Rightarrow 0 \le 4 \rightarrow true$ 

#### Solution region:

The solution of the given system is intersection of the graph of (i) and (ii). so solution region is shaded area as shown in fig.



#### **Question No.3**

Indicate the solution region of the following systems of linear inequalities of shading.

(i) 
$$2x - 3y \le 6$$
 ,  $2x + 3y \le 12$ ;  $y \ge 0$  Solution:

$$2x - 3y \le 6 \to (i)$$
$$2x + 3y \le 12 \to (ii)$$

the associated eqs. of (i) and (ii) are 
$$l_1$$
;  $2x - 3y = 6 \rightarrow (iii)l_2$ ;  $2x + 3y \le 12 \rightarrow (iv)$   
(iii)  $\Rightarrow$  put  $x = 0$ ,  $y = -2so$  the pt  $(0, -2)$   
put  $y = 0$ ,  $x = 3$  so the pt  $(3, 0)$   
(iv)  $\Rightarrow$  put  $x = 0$ ,  $y = 4$  so the pt  $(0, 4)$   
put  $y = 0$ ,  $x = 6$  so the pt  $(6, 0)$   
Test pt  $(0, 0)$ : we test (i) and (ii) at  $(0, 0)$  so  
(i)  $\Rightarrow 0 \ge 6 \rightarrow true$   
(ii)  $\Rightarrow 0 \le 12 \rightarrow true$ 

#### Solution region:

The solution of the given system is intersection of the graphs of (i) and (ii). so solution set is upper half plane including the graph of boundary line y = 0 as shown in fig.



(ii) 
$$x+y \le 5$$
 ,  $y-2x \le 2$  ;  $x \ge 0$  Solution:

$$x + y \leq 5 \rightarrow (i) \ y - 2x \leq 2 \rightarrow (ii)$$

$$the \ associated \ eqs. \ of \ (i) \ and \ (ii) \ are$$

$$l_1; x + y \leq 5 \rightarrow (iii) l_2; y - 2x = 2 \rightarrow (iv)$$

$$(iii) \Rightarrow putx = 0, y = 5so \ the \ pt(0,5)$$

$$put \ y = 0, x = 5 \ so \ the \ pt(5,0)$$

$$(iv) \Rightarrow putx = 0, y = 2 \ so \ the \ pt(0,2)$$

$$put \ y = 0, x = -1 \ so \ the \ pt(-1,0)$$

$$Test \ pt(0,0): we \ test \ (i) \ and \ (ii) \ at \ (0,0) so$$

$$(i) \Rightarrow 0 \leq 5 \rightarrow true$$

$$(ii) \Rightarrow 0 \leq 2 \rightarrow true$$

#### Solution region:

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $x \ge 0$  shows that the graph the solution set of right half plane including the graph of boundary line

x = 0 As shown in fig.



(iii) 
$$x + y \ge 5$$
;  $x - y \ge 1$ ;  $y \ge 0$  Solution:

$$x + y \ge 5 \rightarrow (i) \quad x - y \ge 1 \rightarrow (ii)$$
the associated eqs. of (i) and (ii) are
$$l_1; x + y \ge 5 \rightarrow (iii)l_2; x - y = 1 \rightarrow (iv)$$
(iii)  $\Rightarrow$  put  $x = 0, y = 5$  so the pt(0,5)
put  $y = 0, x = 5$  so the pt(5,0)
(iv)  $\Rightarrow$  put  $x = 0, y = -1$  so the pt(0,-1)
put  $y = 0, x = 1$  so the pt(1,0)
Test pt(0,0): we test (i) and (ii) at (0,0) so
(i)  $\Rightarrow$  0  $\geq$  5  $\rightarrow$  false
(ii)  $\Rightarrow$  0  $\geq$  1  $\rightarrow$  true

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $y \ge 0$  shows that the solution set is upper half plane including the graph of boundary line y = 0 as shown in fig.



(iv)  $3x + 7y \le 21$  ,  $x - y \le 2$  ,  $x \ge 0$  Solution:

$$3x+7y\leq 21\rightarrow (i)\ x-y\leq 2\rightarrow (ii)$$

the associated eqs. of (i) and (ii) are 
$$l_1$$
;  $3x + 7y \le 21 \rightarrow (iii)l_2$ ;  $x - y \le 2 \rightarrow (iv)$  (iii)  $\Rightarrow$  put  $x = 0$ ,  $y = 3$  so the pt(0,3) put  $y = 0$ ,  $x = 7$  so the pt(7,0) (iv)  $\Rightarrow$  put  $x = 0$ ,  $y = -2$  so the pt(0,-2) put  $y = 0$ ,  $x = 2$  so the pt(2,0) Test pt(0,0): we test (i) and (ii) at (0,0) so (i)  $\Rightarrow 0 \le 21 \rightarrow true$  (ii)  $\Rightarrow 0 \le 2 \rightarrow true$ 

#### **Solution region:**

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $x \ge 0$  shows that the solution set of right half plane including the graph of boundary line x = 0 as shown in fig.



(v) 
$$3x + 7y \le 21$$
;  $x - y \le 2$ ;  $y = 0$  Solution:

$$3x + 7y \le 21 \rightarrow (i)$$
  $x - y \le 2 \rightarrow (ii)$   
the associated eqs. of (i) and (ii) are  
 $l_1; 3x + 7y \le 21 \rightarrow (iii)l_2; x - y \le 2 \rightarrow (iv)$   
(iii)  $\Rightarrow putx = 0, y = 3$  so the  $pt(0,3)$   
 $put y = 0, x = 7$  so the  $pt(7,0)$   
(iv)  $\Rightarrow putx = 0, y = -2$  so the  $pt(0,-2)$   
 $put y = 0, x = 2$  so the  $pt(2,0)$   
Test  $pt(0,0)$ : we test (i) and (ii) at (0,0) so  
(i)  $\Rightarrow 0 \le 21 \rightarrow true$   
(ii)  $\Rightarrow 0 \le 2 \rightarrow true$ 

#### **Solution region:**

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $y \ge 0$  shows that the solution set is upper half plane including the graph of boundary line y = 0 as shown in fig.



(vi) 
$$3x + 7y \le 21$$
 ,  $2x - y \ge -3$  ,  $x \ge 0$  Solution:

$$3x + 7y \le 21 \rightarrow (i) \ 2x - y \ge -3 \rightarrow (ii)$$
  
the associated eqs. of (i) and (ii) are  
 $l_1; 3x + 7y \le 21 \rightarrow (iii) l_2; 2x - y \le -3 \rightarrow (iv)$   
(iii)  $\Rightarrow putx = 0, y = 3$  so the  $pt(0,3)$   
 $put \ y = 0, x = 7$  so the  $pt(7,0)$   
(iv)  $\Rightarrow putx = 0, y = 3$  so the  $pt(0,3)$   
 $put \ y = 0, x = -\frac{3}{2}$  so the  $pt(-\frac{3}{2},0)$ 

Test 
$$pt(0,0)$$
: we test (i)and (ii)at (0,0)so

$$(i) \Rightarrow 0 \le 21 \rightarrow true$$
  
 $(ii) \Rightarrow 0 \ge -3 \rightarrow true$ 

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $x \ge 0$  shows that the solution set of right half plane including the graph of boundary line x = 0 as shown in fig.



**Question No.4** 

Graph the solution region of the following system of linear inequalities and find the corner points in each case.

(i) 
$$2x - 3y \le 6$$
;  $2x + 3y \le 12$ ;  $x \ge 0$  Solution:

$$2x - 3y \le 6 \rightarrow (i) \ 2x + 3y \le 12 \rightarrow (ii)$$

$$the \ associated \ eqs. \ of \ (i) and \ (ii) are$$

$$l_1; 2x - 3y = 6 \rightarrow (iii)l_2; 2x + 3y \le 12 \rightarrow (iv)$$

$$(iii) \Rightarrow putx = 0, y = -2 \ so \ the \ pt(0, -2)$$

$$put \ y = 0, x = 3 \ so \ the \ pt(3, 0)$$

$$(iv) \Rightarrow putx = 0, y = 4 \ so \ the \ pt(0, 4)$$

$$put \ y = 0, x = 6 \ so \ the \ pt(6, 0)$$

$$Test \ pt(0, 0): we \ test \ (i) and \ (ii) at \ (0, 0) so$$

$$(i) \Rightarrow 0 \le 6 \rightarrow true$$

#### **Solution region:**

The solution of the given system is intersection of the graphs of (i) and (ii).

 $(ii) \Rightarrow 0 \leq 12 \rightarrow true$ 

Also  $x \ge 0$  shows that the solution set of right half plane including the graph of boundary line x = 0 as shown in fig.



#### **Corner point:**

$$2x - 3y = 6 \rightarrow (i) \ 2x + 3y = 12 \rightarrow (ii)$$

$$by \ (i) + (ii) \Rightarrow 4x = 18 \Rightarrow x = \frac{9}{2} \ put \ in(ii)$$

$$2\left(\frac{9}{2}\right) + 3y = 12 \Rightarrow 3y = 12 - 9 \Rightarrow y = 1$$

$$so \ \left(\frac{9}{2}, 1\right) \ is \ pt. \ of \ intersection \ of \ lines \ (i) \ and$$

$$(ii). \ hence \ corner \ points \ are \ (0, -2)(o, 4)\left(\frac{9}{2}, 1\right)$$

$$(ii) \ x + y \leq 5 \ ; -2x + y \leq 2, \ y \geq 0$$
Solution:
$$x + y \leq 5 \rightarrow (i) \ and \ -2x + y \leq 2 \rightarrow (ii)$$

$$the \ associated \ eqs. \ of \ (i) \ and \ (ii) \ are$$

$$l_1; x + y = 5 \rightarrow (iii) l_2; -2x + y = 2 \rightarrow (iv)$$

 $(iii) \Rightarrow putx = 0, y = 5$ so the pt(0,5)

$$put \ y = 0, x = 5 \ so \ the \ pt(5,0)$$

$$(iv) \Rightarrow put x = 0, y = 2 \ so \ the \ pt(0,2)$$

$$put \ y = 0, x = -1 \ so \ the \ pt(-1,0)$$

$$Test \ pt(0,0): we \ test \ (i) and \ (ii) at \ (0,0) so$$

$$(i) \Rightarrow 0 \le 5 \rightarrow true$$

$$(i) \Rightarrow 0 \leq 5 \rightarrow true$$
  
 $(ii) \Rightarrow 0 \leq 2 \rightarrow true$ 

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $y \ge 0$  shows that the solution set is upper half plane including the graph of boundary line y = 0 as shown in fig.



#### **Corner point:**

$$x+y=5 \rightarrow (i)-2x+y=2 \rightarrow (ii)$$
  
by  $(ii)-(i)\Rightarrow 3x=3\Rightarrow x=1$  put  $in(i)1+y=5$   
 $\Rightarrow y=4$  so  $(1,4)$  is the pt. of intersection of Lines

(i) and (ii). hence corner point are (-1,0) (5,0), (1,4)

(iii) 
$$3x + 7y \le 21$$
 ;  $2x - y \le -3$  ,  $y \ge 0$  Solution:

$$3x + 7y \le 21 \to (i) \quad 2x - y \le -3$$
$$\to (ii)$$

the associated eqs. of (i) and (ii) are  $l_1$ ;  $3x + 7y = 21 \rightarrow (iii)l_2$ ;  $2x - y = -3 \rightarrow (iv)$ (iii)  $\Rightarrow putx = 0, y = 3$  so the pt(0,3)put y = 0, x = 7 so the pt(7,0)

$$(iv) \Rightarrow putx = 0, y = 3 \text{ so the } pt(0,3)$$
  
put  $y = 0, x = -\frac{3}{2} \text{ so the } pt(-\frac{3}{2},0)$ 

put  $y = 0, x = -\frac{1}{2}$  so the  $pt(-\frac{1}{2}, 0)$ Test pt(0,0): we test (i)and (ii)at (0,0)so

 $(i) \Rightarrow 0 \le 21 \rightarrow true$ 

 $(ii) \Rightarrow 0 \le -3 \rightarrow false$ 

#### **Solution region:**

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $y \ge 0$  shows that the solution set is upper half plane including the graph of boundary line y = 0 as shown in fig.



#### Corner point:

Corner pts. are (0,3) and  $\left(-\frac{3}{2},0\right)$ 

(iv) 
$$3x + 2y \ge 6 \to (i) \ x + 3y \le 6 \ ; y \ge 0$$
 Solution:

 $3x + 2y \ge 6 \rightarrow (i)$  and  $x + 3y \le 6 \rightarrow (ii)$ the associated eqs. of (i) and (ii) are

$$l_1$$
;  $3x + y = 6 \rightarrow (iii)l_2$ ;  $x + 3y = 6 \rightarrow (iv)$ 

(iii) 
$$\Rightarrow$$
 put  $x = 0, y = 3$  so the pt(0,3)  
put  $y = 0, x = 2$ so the pt(2,0)

$$(iv) \Rightarrow putx = 0, y = 2 \text{ so the } pt(0,2)$$

put 
$$y = 0, x = 6$$
 so the pt(6,0)

Test pt(0,0): we test (i) and (ii) at (0,0) so

$$(i) \Rightarrow 0 \geq 6 \rightarrow false$$

$$(ii)$$
 ⇒  $0 \le 6 \rightarrow true$ 

#### **Solution region:**

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $y \ge 0$  shows that the solution set is upper half plane including the graph of boundary line y=0 as shown in fig.



#### **Corner point:**

$$as 3x + 2y = 6 \rightarrow (i)$$

$$x + 3y = 6 \rightarrow (ii)$$

$$3x + 9y = 18$$

$$3(ii) - (i) \Rightarrow \frac{\pm 3x \pm 2y = \pm 6}{7y = 12}$$

$$\Rightarrow y = \frac{12}{7} \text{ put in}(ii)$$

$$\Rightarrow x = 6 - \frac{36}{7} = \frac{42 - 36}{7} = \frac{6}{7}$$

So pt. of intersection of lines (i) and (ii) is  $(\frac{6}{7}, \frac{12}{7})$  hence corner pts are (2,0), (6,0),  $(\frac{6}{7}, \frac{12}{7})$ 

(v) 
$$5x + 7y \le 35$$
;  $-x + 3y \le 3$ ;  $x \ge 0$ 

#### Solution:

$$5x + 7y \le 35 \rightarrow (i) - x + 3y \le 3 \rightarrow (ii)$$
  
the associated eqs. of (i) and (ii) are  
 $l_1; 5x + 7y = 35 \rightarrow (iii)l_2; -x + 3y = 3 \rightarrow (iv)$   
(iii)  $\Rightarrow putx = 0, y = 5$  so the  $pt(0,5)$   
 $put y = 0, x = 7$  so the  $pt(7,0)$   
(iv)  $\Rightarrow putx = 0, y = 1$  so the  $pt(0,1)$   
 $put y = 0, x = -3$  so the  $pt(-3,0)$   
Test  $pt(0,0)$ : we test (i) and (ii) at (0,0) so  
(i)  $\Rightarrow 0 \le 35 \rightarrow true$ 

$$(ii) \Rightarrow 0 \leq 3 \rightarrow true$$
 Solution region:

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $x \ge 0$  shows that the solution set of right half plane including the graph of boundary line x = 0 as shown in fig.



Corner point: as 
$$5x + 7y = 35 \rightarrow (i)$$
  
 $-x + 3y = 3 \rightarrow (ii)$   
By  $5(ii) + (i) \Rightarrow 22y - 50 \Rightarrow y = \frac{50}{22}$  put in (ii)  
 $-x + 3\left(\frac{50}{22}\right) = 3$   
 $\Rightarrow -x = 3 - \frac{150}{22} = 3 - \frac{75}{11} = \frac{33 - 75}{11} = -\frac{42}{11}$ 

$$\Rightarrow -x = -\frac{42}{11} \Rightarrow x = \frac{42}{11}$$
So pt. of intersection of lines (i) and (ii) is
$$\left(\frac{42}{11}, \frac{25}{11}\right) \text{ so corner points are } (0,1), (7,0), \left(\frac{42}{11}, \frac{25}{11}\right).$$
(vi)  $5x + 7y \le 35$ ;  $x - 2y \le 2$ ;  $x \ge 0$ 

**Solution:** 

$$5x + 7y \leq 35 \rightarrow (i) \quad x - 2y \leq 2 \rightarrow (ii)$$

$$the \ associated \ eqs. \ of \ (i) \ and \ (ii) \ are$$

$$l_1; 5x + 7y \leq 35 \rightarrow (iii) l_2; x - 2y \leq 2 \rightarrow (iv)$$

$$(iii) \Rightarrow putx = 0, y = 5 \ so \ the \ pt(0,5)$$

$$put \ y = 0, x = 7 \ so \ the \ pt(7,0)$$

$$(iv) \Rightarrow putx = 0, y = -1 \ so \ the \ pt(0,-1)$$

$$put \ y = 0, x = 2 \ so \ the \ pt(2,0)$$

$$Test \ pt(0,0): we \ test \ (i) \ and \ (ii) \ at \ (0,0) so$$

$$(i) \Rightarrow 0 \leq 35 \rightarrow true$$

$$(ii) \Rightarrow 0 \leq 2 \rightarrow true$$

#### Solution region:

The solution of the given system is intersection of the graphs of (i) and (ii).

Also  $x \ge 0$  shows that the solution set of right half plane including the graph of boundary line x=0 as shown in fig.



**Corner points:** 

Corner points:  

$$as \ 5x + 7y = 35 \rightarrow (i)$$
  
 $x - 2y = 2 \rightarrow (ii)$   
By  $5(ii) - (i) \Rightarrow 5x - 10y = 10$   
 $\pm 5x \pm 7y = \pm 35$   
 $-17y = -25 \Rightarrow y = \frac{25}{17}$   
 $put \ in(ii) \Rightarrow x - 2\left(\frac{25}{17}\right) = 2 \Rightarrow x = 2 + \frac{50}{17}$   
 $x = \frac{34 + 50}{17} \Rightarrow x = \frac{84}{17}$   
So  $pt.\ of\ intersection\ of\ lins\ (i)\ and\ (ii)\ are$   
 $\left(\frac{84}{17}, \frac{25}{17}\right)$ . so  $corner\ pts.\ are\ (0, -2), (0,5)$ 

#### **Question No.5**

Graph the solution region of the following system of linear inequalities by shading

(i) 
$$3x - 4y \le 12$$
;  $3x + 2y \ge 3$ ,  $x + 2y \le 9$ 

#### **Solution:**

$$3x - 4y \le 12 \rightarrow (i); 3x + 2y \ge 3 \rightarrow (ii)$$
$$x + 2y \le 9 \rightarrow (iii)$$

The associated eqs. of (i), (ii) and (iii) are  $l_1$ ;  $3x - 4y = 12 \rightarrow (iv)$ ,  $l_2$ ;  $3x + 2y = 3 \rightarrow (ii)$ 

$$l_3$$
;  $x + 2y = 9 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = -3 \text{ so that pt.} (0, -3)$$
  
put  $y = 0, x = 4 \text{ so the pt.} (4,0)$ 

$$(v) \Rightarrow putx = 0, y = -\frac{3}{2} \text{ so the pt.} \left(0, \frac{3}{2}\right)$$
  
 $put y = 0, x = 1 \text{ so the pt}(1,0)$ 

$$(vi) \Rightarrow putx = 0, y = \frac{9}{2} \text{ so the pt } \left(0, \frac{9}{2}\right)$$
  
 $put y = 0, x = 9 \text{ so the pt. } (9,0)$ 

Test pt(0,0): we test (i), (ii) and (iii) at (0,0) so (i)  $\Rightarrow$  0  $\leq$  12  $\rightarrow$  true (ii)  $\Rightarrow$  0  $\geq$  3  $\rightarrow$  false (iii)  $\Rightarrow$  0  $\leq$  9  $\rightarrow$  true

# **Solution region:**

The solution of the given system is intersection of

(i), (ii) and (iii) so solution region is shaded area as shown in fig.



(ii)  $3x - 4y \le 12$ ;  $x + 2y \le 6$ ;  $x + y \ge 1$  Solution:

$$3x - 4y \le 12 \rightarrow (i); x + 2y \ge 6 \rightarrow (ii)$$
$$x + y \ge 1 \rightarrow (iii)$$

The associated eqs. of (i), (ii) and (iii) are  $l_1$ ;  $3x - 4y = 12 \rightarrow (iv)$ ,  $l_2$ ;  $x + 2y = 6 \rightarrow (ii)$   $l_3$ ;  $x + y = 1 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = -3$$
 so that  $pt.(0, -3)$ 

put 
$$y = 0, x = 4$$
 so the pt. (4,0)

$$(v) \Rightarrow putx = 0, y = 3 \text{ so the pt.} (0,3)$$
  
put  $y = 0, x = 6 \text{ so the pt} (6,0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 1 \ so \ the \ pt \ (0,1)$$
  
 $put \ y = 0, x = 1 \ so \ the \ pt. \ (1,0)$ 

Test 
$$pt(0,0)$$
: we test  $(i)$ ,  $(ii)$  and  $(iii)$  at  $(0,0)$ 

$$so(i) \Rightarrow 0 \leq 12 \rightarrow true \ (ii) \Rightarrow 0 \leq 6 \rightarrow true$$
  
 $(iii) \Rightarrow 0 \geq 1 \rightarrow false$ 

#### **Solution region:**

The solution of the given system is intersection of

(i), (ii) and (iii) so solution region is shaded are a as shown in fig.



(iii) 
$$2x + y \le 4$$
;  $2x - 3y \ge 12$ ;  $x + 2y \le 12$ 

$$x + 2y \le 6$$

#### **Solution:**

$$2x + y \le 4 \to (i)$$
;  $2x - 3y \ge 12 \to (ii)$ ;  $x + 2y \le 12 \to (iii)$ 

The associated eqs. of (i), (ii) and (iii) are  $l_1$ ;  $2x + y = 4 \rightarrow (iv)$ ,  $l_2$ ;  $2x - 3y = 12 \rightarrow (ii)$   $l_3$ ;  $2x - 3y = 12 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = 4$$
 so that pt. (0,4)  
put  $y = 0, x = 2$  so the pt. (2,0)

$$(v) \Rightarrow put \ x = 0, y = -4 \ so \ the \ pt. (0, -4)$$
  
 $put \ y = 0, x = 6 \ so \ the \ pt (6,0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 3 \ so \ the \ pt \ (0,3)$$
  
 $put \ y = 0, x = 6 \ so \ the \ pt. \ (6,0)$ 

Test pt(0,0): we test (i), (ii) and (iii) at (0,0)

$$so(i) \Rightarrow 0 \le 4 \rightarrow true \ (ii) \Rightarrow 0 \ge 12 \rightarrow false$$
  
 $(iii) \Rightarrow 0 \le 6 \rightarrow true$ 

#### **Solution region:**

The solution of the given system is intersection of

(i),(ii)and (iii)so solution region is shaded are a as shown in fig.



(iv)  $2x + y \le 10$ ;  $x + y \le 7$ ;  $-2x + y \le 4$  Solution:

$$2x + y \le 10 \rightarrow (i); \ x + y \le 7 \rightarrow (ii);$$
$$-2x + y \le 4 \rightarrow (iii)$$

The associated eqs. of (i), (ii) and (iii) are  $l_1$ ;  $2x + y = 10 \rightarrow (iv)$ ,  $l_2$ ;  $x + y = 7 \rightarrow (ii)$   $l_3$ ;  $-2x + y = 4 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = 10$$
 so that pt. (0,4)  
put  $y = 0, x = 5$  so the pt. (5,0)

$$(v) \Rightarrow put \ x = 0, y = 7 \ so \ the \ pt. (0,7)$$
  
 $put \ y = 0, x = 7 \ so \ the \ pt(7,0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 4 \ so \ the \ pt \ (0,4)$$
  
 $put \ y = 0, x = -2 \ so \ the \ pt. \ (-2,0)$ 

Test pt(0,0): we test (i), (ii) and (iii) at (0,0) so (i)  $\Rightarrow 0 \le 10 \rightarrow true$  (ii)  $\Rightarrow 0 \le 7 \rightarrow true$ (iii)  $\Rightarrow 0 \le 4 \rightarrow true$ 

#### **Solution region:**

The solution of the given system is intersection of

(i), (ii) and (iii) so solution region is shaded area as shown in fig.



(v) 
$$2x + 3y \le 18$$
;  $2x + y \le 10$ ;  $-2x + y \le 2$ 

**Solution:** 

$$2x + 3y \le 18 \rightarrow (i) \ 2x + y \le 10 \rightarrow (ii)$$
$$; -2x + y \le 2 \rightarrow (iii)$$

The associated eqs. of (i), (ii) and (iii) are  $l_1$ ;  $2x + 3y = 18 \rightarrow (iv)$ ,  $l_2$ ; 2x + y = 10

$$l_3: -2x + y = 2 \rightarrow (vi)$$

$$(iv) \Rightarrow putx = 0, y = 6 \text{ so that pt.} (0,6)$$
  
put  $y = 0, x = 9 \text{ so the pt.} (9,0)$ 

$$(v) \Rightarrow put \ x = 0, y = 10 \ so \ the \ pt. (0, 10)$$
  
 $put \ y = 0, x = 5 \ so \ the \ pt (5, 0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 2 \ so \ the \ pt \ (0,2)$$
  
 $put \ y = 0, x = -1 \ so \ the \ pt. \ (-1,0)$ 

Test pt(0,0): we test (i), (ii) and (iii) at (0,0)

so (i) 
$$\Rightarrow$$
 0  $\leq$  18  $\rightarrow$  true (ii)  $\Rightarrow$  0  $\leq$  10  $\rightarrow$  true (iii)  $\Rightarrow$  0  $\leq$  2  $\rightarrow$  true

# **Solution region:**

The solution of the given system is intersection of

(i), (ii) and (iii) so solution region is shaded are a as shown in fig.



(vi) 
$$3x - 2y \ge 3$$
;  $x + 4y \le 12$ ;  $3x + y \le 12$ 

Solution:

$$3x - 2y \ge 3 \rightarrow (i) \ x + 4y \le 12 \rightarrow (ii)$$
$$3x + y \le 12 \rightarrow (iii)$$

The associated eqs. of (i), (ii) and (iii) are  $l_1$ ;  $3x - 2y = 3 \rightarrow (iv)$ ,  $l_2$ ;  $x + 4y = 12 \rightarrow (ii)$   $l_3$ ;  $3x + y = 12 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = -\frac{3}{2}$$
 so that  $pt.\left(0, -\frac{3}{2}\right)$   
 $put y = 0, x = 1$  so the  $pt.\left(1, 0\right)$ 

$$(v) \Rightarrow put \ x = 0, y = 3 \ so \ the \ pt. (0,3)$$
  
put  $y = 0, x = 12 \ so \ the \ pt (12,0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 12 \ so \ the \ pt \ (0,12)$$

$$put \ y = 0, x = 4 \ so \ the \ pt. \ (4,0)$$
Test  $pt(0,0)$ :  $we \ test \ (i), (ii) \ and \ (iii) \ at \ (0,0)$ 

$$so \ (i) \Rightarrow 0 \geq 3 \rightarrow false \ (ii) \Rightarrow 0 \leq 12 \rightarrow true$$

$$(iii) \Rightarrow 0 \leq 12 \rightarrow true$$

The solution of the given system is intersection of

(i), (ii) and (iii) so solution region is shaded area as shown in fig.



#### **Problem constraints:**

The restrictions applied on the everyday life problems are called problem concentration.

#### Non- Negative constraints:

The constraints that are always satisfied are called natural constraints or non- negative constraints.

#### **Decision variable:**

The variable used in non-negative constraints are called decision variable.

#### Feasible region:

The solution region which is restricted to the first quadrant is called feasible region. We restricted the solution region by using non-negative constraints  $x \ge 0$  and  $y \ge 0$ 

#### Feasible solution:

Each point of feasible region is called feasible solution of the system.

#### **Feasible solution Set:**

A set consists of all the feasible solution of the system is called feasible solution.

# Exercise 5.2

Graph the feasible region of the following system of linear inequalities and find the corner points in each case

(i) 
$$2x - 3y \le 6$$
;  $2x + 3y \le 12$ ;  $x \ge 0$ ,  $y \ge 0$ 

#### **Solution:**

$$2x - 3y \le 6 \rightarrow (i) \ 2x + 5y \le 12 \rightarrow (ii)$$
  
the associated eqs. of (i) and (ii) are  
 $l_1; 2x - 3y = 6 \rightarrow (iii), \ l_2; \ 2x + 5y = 12$   
 $\rightarrow (iv)$ 

(iii) 
$$\Rightarrow putx = 0, y = -2$$
 so the  $pt(0, -2)$   
 $put x = 0, y = 3$  so the  $pt(3,0)$ 

$$(iv) \Rightarrow put \ x = 0, y = 4 \ so \ the \ pt \ (0,4)$$
  
 $put \ y = 0, x = 6 \ so \ the \ pt \ (6,0)$ 

Test pt(0,0): we test (i) and (ii) at (0,0) so

$$(i)\Rightarrow 0\leq 6 \rightarrow true\ (ii)\Rightarrow 0\leq 12 \rightarrow true.$$

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### **Corner point:**

$$as 2x - 3y = 6 \rightarrow (i)$$

$$2x + 3y = 12 \rightarrow (ii)$$
By (i) + (ii)  $\Rightarrow$  4x = 18  $\Rightarrow$  x =  $\frac{9}{2}$  put in (i)
$$\Rightarrow 2\left(\frac{9}{2}\right) - 3y = 6 \Rightarrow -3y = 6 - 9$$

$$-3y = -3$$

 $\Rightarrow y = 1 \text{ so } \left(\frac{9}{2}, 1\right) \text{ is the pt. of intersection of }$ lines (i) and (ii) Thus cornerpoints of feasible region are  $(0,0), (3,0), (\frac{9}{2},1)$  and (0,4)

(ii) 
$$x + y \le 5$$
;  $-2x + y \le 2$ ;  $x \ge 0$ ,  $y \ge 0$ 

# Solution:

$$x + y \le 5 \rightarrow (i); -2x + y \le 2 \rightarrow (ii)$$
  
the associated eqs. of (i) and (ii) are  
 $l_1; x + y = 5 \rightarrow (iii), \ l_2; -2x + y = 2 \rightarrow (iv)$   
(iii)  $\Rightarrow$  put  $x = 0, y = 5$  so the pt(0,5)  
put  $x = 0, y = 5$  so the pt(5,0)  
(iv)  $\Rightarrow$  put  $x = 0, y = 2$  so the pt (0,2)  
put  $y = 0, x = -1$  so the pt(-1,0)  
Test pt(0,0): we test (i) and (ii) at (0,0) so

$$(i) \Rightarrow 0 \leq 5 \rightarrow true \ (ii) \Rightarrow 0 \leq 2 \rightarrow true.$$

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### **Corner point:**

$$as x + y = 5 \rightarrow (i)$$

$$-2x + y = 2 \rightarrow (ii)$$
By (i) - (ii)  $\Rightarrow$   $3x = 3 \Rightarrow x = 1$  put in (i)

$$\Rightarrow 1 + y = 5 \Rightarrow y = 5 - 1 = 4$$
so (1.4) is pt. of intersection of lines (i) and

so (1,4)is pt. of intersection of lines (i) and (ii) thus corner pts. of feasible region are (0,0), (5,0)(1.4) and (0.2)

# (iii) $x + y \le 5$ ; $-2x + y \ge 2$ ; $x \ge 0$ , $y \ge 0$ Solution:

$$x + y \le 5 \rightarrow (i), -2x + y \ge 2 \rightarrow (ii)$$
  
the associated eqs. of (i) and (ii) are  
 $l_1; x + y = 5 \rightarrow (iii), \ l_2; -2x + y = 2 \rightarrow (iv)$   
(iii)  $\Rightarrow$  put  $x = 0, y = 5$  so the pt(0,5)  
put  $x = 0, y = 5$  so the pt(5,0)  
(iv)  $\Rightarrow$  put  $x = 0, y = 2$  so the pt (0,2)  
put  $y = 0, x = -1$ so the pt(-1,0)  
Test pt(0,0): we test (i) and (ii) at (0,0) so

 $(i) \Rightarrow 0 \leq 5 \Rightarrow true \ (ii) \Rightarrow 0 \geq 2 \Rightarrow false.$ 

### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### **Corner point:**

$$as \ x + y = 5 \rightarrow (i)$$

$$-2x + y = 2 \rightarrow (ii)$$
By  $(i) - (ii) \Rightarrow 3x = 3 \Rightarrow x = 1 \ put \ in \ (i)$ 

$$\Rightarrow 1 + y = 5 \Rightarrow y = 5 - 1 = 4$$
so  $(1,4)$  is pt. of intersection of lines  $(i)$  and  $(ii)$  thus corner pts. of feasible region are  $(0,5)(1,4)$  and  $(0,2)$ 

(iv) 
$$3x + 7y \le 21$$
;  $x - y \le 3$ ;  $x \ge 0, y \ge 0$ 

#### Solution:

$$3x + 7y \leq 21 \rightarrow (i); \quad x - y \leq 3 \rightarrow (ii)$$
 the associated eqs. of (i) and (ii) are 
$$l_1; 3x + 7y = 21 \rightarrow (iii), \quad l_2; \ x - y = 3 \rightarrow (iv)$$
 (iii)  $\Rightarrow$  put  $x = 0, y = 3$  so the pt(0,3) put  $x = 7, y = 0$  so the pt(7,0) (iv)  $\Rightarrow$  put  $x = 0, y = -3$  so the pt (0,2) put  $y = 0$ ,  $x = 3$  so the pt(-1,0) Test pt(0,0): we test (i) and (ii) at (0,0) so (i)  $\Rightarrow 0 \leq 21 \rightarrow true$  (ii)  $\Rightarrow 0 \leq 3 \rightarrow false$ .

# Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### **Corner point:**

$$as 3x + 7y = 21 \rightarrow (i)$$
$$x - y = 3 \rightarrow (ii)$$

By 
$$7(ii) + (i) \Rightarrow 10x = 42 \Rightarrow x = \frac{21}{5}$$
 put in (ii)  

$$\Rightarrow \frac{21}{5} - y = 3 \Rightarrow y = \frac{21}{5} - 3 = \frac{6}{5}$$

so  $\left(\frac{121}{5}, \frac{6}{5}\right)$  is pt. of intersection of lines (i) and

(ii) thus corner pts. of feasible region are  $(0,0), (3,0), \left(\frac{21}{5}, \frac{6}{5}\right)$  and (0,3)

(v) 
$$3x + 2y \ge 6$$
;  $x + y \le 4$ ;  $x \ge 0$ ,  $y \ge 0$  Solution:

$$3x + 2y \ge 6 \rightarrow (i)$$
 and  $x + y \le 4 \rightarrow (ii)$   
the associated eqs. of (i) and (ii) are  
 $l_1$ ;  $3x + 2y = 6 \rightarrow (iii)$ ,  $l_2$ ;  $x + y = 4 \rightarrow (iv)$   
(iii)  $\Rightarrow$  put  $x = 0$ ,  $y = 3$  so the pt(0,3)  
put  $x = 2$ ,  $y = 0$  so the pt(2,0)  
(iv)  $\Rightarrow$  put  $x = 0$ ,  $y = 4$  so the pt (0,4)

$$put \ y=0 \ , x=4so \ the \ pt(4,0)$$
 Test  $pt(0,0)$ : we test (i) and (ii) at (0,0) so (i)  $\Rightarrow 0 \geq 6 \rightarrow false \ (ii) \Rightarrow 0 \leq 4 \rightarrow true.$ 

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0$$
,  $y \ge$ 

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



thus corner pts. of feasible region are (2,0)(4,0)(0,0) and (0,3)

(vi) 
$$5x + 7y \le 35$$
;  $x - 2y \le 4$ ;  $x \ge 0$ ,  $y \ge 0$   
Solution:

$$5x + 7y \le 35 \rightarrow (i)$$
  $x - 2y \le 4 \rightarrow (ii)$   
the associated eqs. of (i) and (ii) are  
 $l_1$ ;  $5x + 7y = 35 \rightarrow (iii)$ ,  $l_2$ ;  $x - 2y = 4$   
 $\rightarrow (iv)$ 

(iii) 
$$\Rightarrow$$
 put  $x = 0$ ,  $y = 5$  so the pt(0,5)  
put  $x = 7$ ,  $y = 0$  so the pt(7,0)

$$(iv) \Rightarrow put \ x = 0, y = 4 \ so \ the \ pt \ (0, -2)$$
  
 $put \ y = 0$ ,  $x = 4 \ so \ the \ pt \ (4,0)$ 

Test pt(0,0): we test (i)and (ii) at (0,0)

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### **Corner point:**

$$As 5x + 7y = 35 \rightarrow (i)$$

$$x - 2y = 4 \rightarrow (ii)$$
By  $5(ii) - (i) \Rightarrow 5x - 10y = 20$ 

$$\underline{\pm 5x \pm 7y = \pm 35}$$

$$-17y = -15$$

$$\Rightarrow y = \frac{15}{17} \text{ put in (ii)}$$

$$\Rightarrow x - 2\left(\frac{15}{17}\right) = 4 \Rightarrow x = 4 + \frac{30}{17}$$

 $\left(\frac{99}{17}, \frac{15}{17}\right)$  is the pt. of intersection of lines (i) and (ii)

Hence corner pts. are (0,0), (4,0)  $\left(\frac{98}{17},\frac{15}{17}\right)$  and (0,5)

#### **Question No.2**

Graph the feasible region of the following system of linear inequalities and find the corner points in each case.

(i) 
$$2x + y \le 10$$
;  $x + 4y \le 12$ ;  $x + 2y \le 10$ ;  $x \ge 0$ ,  $y \ge 0$ 

Solution:

$$2x + y \le 10 \rightarrow (i); x + 4y \le 12 \rightarrow (ii)$$
$$; x + 2y \le 0 \rightarrow (iii)$$

The associated eqs. of (i), (ii) and (iii) are

$$l_1; 2x + y = 10 \rightarrow (iv)$$
 ,  $l_2; x + 4y = 12 \rightarrow (ii)$   
 $l_3; x + 2y = 10 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = 10 \text{ so that pt.} (0,10)$$
  
put  $y = 0, x = 5 \text{ so the pt.} (5,0)$ 

$$(v) \Rightarrow put \ x = 0, y = 3 \ so \ the \ pt. (0,3)$$
  
put  $y = 0, x = 12 \ so \ the \ pt(12,0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 5 \ so \ the \ pt \ (0,5)$$
  
 $put \ y = 0, x = 10 \ so \ the \ pt. \ (10,0)$ 

Test pt(0,0): we test (i), (ii) and (iii) at (0,0)

$$so(i) \Rightarrow 0 \le 10 \rightarrow true \ (ii) \Rightarrow 0 \le 12 \Rightarrow True$$
  
 $(iii) \Rightarrow 0 \le 10 \rightarrow true$ 

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also  $x \ge 0, y \ge$ 

0 indicates that graph of solution Set in 1st Quadrant as shown in fig



Corner point.

We find pt. of intersection of lines  $l_1$ ,  $l_2$  so

$$l_1$$
;  $2x + y = 10 \rightarrow (i)$ 

$$l_2; x+4y=12 \rightarrow (ii)$$

$$By2(ii) - (i) \Rightarrow 2x + 8y = 24$$

$$\pm 2x \pm y = -10$$

$$7y = 14 \Rightarrow y = 2 \text{ put in } (i)$$

$$\Rightarrow x = 4$$

So(4,2) is pt of intersection of lines (i) and (ii)thus corner pt. of feasible region are (0,0), (5,0), (4,2) and (0,3)

(ii) 
$$2x + 3y \le 18$$
;  $2x + y \le 10$ ;  $x + 4y \le 12$   
 $x \ge 0$ ,  $y \ge 0$ 

Solution:

$$2x + 3y \le 18 \to (i); 2x + y \le 10 \to (ii)$$
  
;  $x + 4y \le 12 \to (iii)$ 

The associated eqs. of (i), (ii) and (iii) are

$$l_1; 2x + 3y = 18 \rightarrow (iv)$$
 ,  $l_2; 2x + y = 10 \rightarrow (ii)$   
 $l_3; x + 4y = 12 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = 6$$
 so that pt. (0,6)  
put  $y = 0, x = 9$  so the pt. (9,0)

$$(v) \Rightarrow put \ x = 0, y = 10 \ so \ the \ pt. (0, 10)$$
  
 $put \ y = 0, x = 5 \ so \ the \ pt(5,0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 3 \ so \ the \ pt \ (0,3)$$
  
 $put \ y = 0, x = 12 \ so \ the \ pt. \ (12,0)$ 

Test pt(0,0): we test (i), (ii) and (iii) at (0,0)

$$so(i) \Rightarrow 0 \le 18 \rightarrow true \quad (ii) \Rightarrow 0 \le 10 \rightarrow True$$
  
 $(iii) \Rightarrow 0 \le 12 \rightarrow true$ 

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also  $x \ge 0, y \ge$ 

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### Corner point.

We find pt. of intersection of lines  $l_1$ ,  $l_2$  so

$$l_1$$
;  $2x + y = 10 \rightarrow (i)$ 

$$l_2$$
;  $x + 4y = 12 \rightarrow (ii)$ 

$$By2(ii) - (i) \Rightarrow 2x + 8y = 24$$

$$\frac{\pm 2x \pm y = -10}{7y = 14 \Rightarrow y = 2 \text{ put in (i)}}$$
$$\Rightarrow x = 4$$

So(4,2)is pt of intersection of lines (i) and (ii)thus corner pt. of feasible region are (0,0), (5,0), (4,2)and (0,3)

(iii) 
$$2x + 3y \le 18$$
;  $x + 4y \le 12$ ;  $3x + y \le 12$ 

$$x \ge 0, y \ge 0$$

#### **Solution:**

$$2x + 3y \le 18 \to (i); \ x + 4y \le 12 \to (ii)$$
$$3x + y \le 12 \to (iii)$$
$$; x + 2y \le 0 \to (iii)$$

The associated eqs. of (i), (ii) and (iii) are  $l_1; 2x + 3y = 18 \rightarrow (iv)$ ,  $l_2; x + 4y = 12$   $\rightarrow (ii)$ 

$$l_3$$
;  $3x + y = 12 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = 3 \text{ so that pt.} (0,3)$$
  
 $put y = 0, x = 6 \text{ so the pt.} (6,0)$ 

$$(v) \Rightarrow put \ x = 0, y = 9 \ so \ the \ pt. (0, 9)$$
  
 $put \ y = 0, x = 12 \ so \ the \ pt (12, 0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 12 \ so \ the \ pt \ (0.12)$$
  
 $put \ y = 0, x = 4 \ so \ the \ pt. \ (4,0)$ 

Test pt(0,0): we test (i), (ii) and (iii) at (0,0) so (i)  $\Rightarrow 0 \le 18 \rightarrow true$  (ii)  $\Rightarrow 0 \le 12 \rightarrow True$ (iii)  $\Rightarrow 0 \le 12 \rightarrow true$ 

# Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig



#### Corner point.

We find pt. of intersection of lines  $l_1$ ,  $l_2$  so

$$l_1$$
;  $x + 4y = 12 \rightarrow (i)$   
 $l_2$ ;  $3x + y = 12 \rightarrow (ii)$   
By  $3(ii) - (i) \Rightarrow 3x + 12y = 36$ 

$$\frac{\pm 3x \pm y = -12}{11y = 24 \Rightarrow y = \frac{24}{11} \text{ put in (i)}}$$

$$\Rightarrow x + 4\left(\frac{24}{11}\right) = 12 \Rightarrow x12 - \frac{36}{11}$$

$$x = \frac{132 - 96}{11} = \frac{36}{11}$$

 $So\left(\frac{36}{11}, \frac{24}{11}\right)$  is pt of intersection of lines (i) and (ii) thus corner pt. of feasible region are (0,0), (4,0),  $\left(\frac{36}{11}, \frac{24}{11}\right)$  and (0,3)

(iv) 
$$x + 2y \le 14$$
;  $3x + 4y \le 36$ ;  $2x + y \le 10$ 

$$x \ge 0$$
;  $y \ge o$ 

#### **Solution:**

$$x + 2y \le 14 \to (i); 3x + 4y \le 36 \to (ii)$$
  
;  $2x + y \le 10 \to (iii)$ 

The associated eqs. of (i), (ii) and (iii) are  $l_1$ ;  $x + 2y = 14 \rightarrow (iv)$ ,  $l_2$ ; 3x + 4y = 36  $\rightarrow$  (ii)

$$l_3$$
;  $2x + y = 10 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = 7 \text{ so that } pt. (0,7)$$

$$put y = 0, x = 14 \text{ so the pt.} (14,0)$$
  
 $(y) \Rightarrow put x = 0, y = 9 \text{ so the pt.} (0,9)$ 

$$(v) \Rightarrow put \ x = 0, y = 9 \ so \ the \ pt. (0, 9)$$
  
put  $y = 0, x = 12 \ so \ the \ pt (12, 0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 10 \ so \ the \ pt \ (0.10)$$
 $nut \ y = 0, x = 5 \ so \ the \ nt. (5.0)$ 

put y = 0, x = 5 so the pt. (5,0) Test pt(0,0): we test (i), (ii) and (iii) at (0,0)

 $so(i) \Rightarrow 0 \le 14 \rightarrow true \quad (ii) \Rightarrow 0 \le 36 \rightarrow True$  $(iii) \Rightarrow 0 \le 10 \rightarrow true$ 

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0$$
,  $y \ge$ 

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### Corner point.

We find pt. of intersection of lines  $l_1$ ,  $l_2$  so

$$l_1$$
;  $x + 2y = 14 \rightarrow (i)$ 

$$l_2; 2x + y = 10 \rightarrow (ii)$$
 
$$\text{By2}(i) - (ii) \quad \Rightarrow 2x + 4y = 28$$
 
$$\pm 2x \pm y = -10$$
 
$$3y = 18 \Rightarrow y = 6 \text{ put in } (i)$$
 
$$\Rightarrow x + 12 = 14 \Rightarrow x = 2$$

So(2,6) is pt of intersection of lines (i) and (ii) thus corner pt. of feasible region are (0,0), (5,0), (2,6) and (0,7)

(v) 
$$x + 3y \le 15$$
;  $2x + y \le 12$ ;  $4x + 3y \le 24$ 

$$x \ge 0, y \ge 0$$

Solution:

$$x + 3y \le 15 \rightarrow (i) \ 2x + y \le 12 \rightarrow (ii)$$
$$4x + 3y \le 24 \rightarrow (iii)$$

The associated eqs. of (i), (ii) and (iii) are  $l_1$ ;  $x+3y=15 \rightarrow (iv)$ ,  $l_2$ ;  $2x+y=12 \rightarrow (ii)$   $l_3$ ;  $4x+3y=24 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = 5 \text{ so that pt.} (0,5)$$
  
put  $y = 0, x = 15 \text{ so the pt.} (15,0)$ 

$$(v) \Rightarrow put \ x = 0, y = 12 \ so \ the \ pt. (0, 12)$$
  
 $put \ y = 0, x = 6 \ so \ the \ pt (6,0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 8 \ so \ the \ pt \ (0.8)$$
  
 $put \ y = 0, x = 6 \ so \ the \ pt. \ (6.0)$ 

Test pt(0,0): we test (i), (ii) and (iii) at (0,0) so (i)  $\Rightarrow 0 \le 15 \rightarrow true$  (ii)  $\Rightarrow 0 \le 12 \rightarrow True$ (iii)  $\Rightarrow 0 \le 24 \rightarrow true$ 

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also  $x \ge 0, y \ge$ 

0 indicates that graph of solution Set in 1st Quadrant as shown in fig



# Corner point.

We find pt. of intersection of lines  $l_1$ ,  $l_2$  so

$$l_1; x + 3y = 15 \rightarrow (i)$$

$$l_2; 4x + 3y = 24 \rightarrow (ii)$$

$$By(i) - (ii) \Rightarrow -3x = -9 \Rightarrow x = 3 \text{ put in}(i)$$

$$\Rightarrow 3y = 15 - 3 = 12 \Rightarrow y = 4$$

$$So(3,4)$$
 is pt. of intersection of lines (i)

and (ii) thus corner pt. of feasible region are (0,0), (6,0), (3,4) and (0,5)

(vi) 
$$2x + y \le 20$$
;  $8x + 15y \le 20$ ;  $x + y \le 11$   
 $x \ge 0, y \ge 0$ 

Solution:

$$2x + y \le 20 \rightarrow (i); 8x + 15y \le 20$$
$$\rightarrow (ii)$$
$$; x + y \le 11 \rightarrow (iii)$$

The associated eqs. of (i), (ii) and (iii) are  $l_1$ ;  $2x + y = 20 \rightarrow (iv)$ ,  $l_2$ ;  $8x + 15y = 20 \rightarrow (ii)$ 

$$l_3$$
;  $x + y = 11 \rightarrow (vi)$ 

$$(iv) \Rightarrow putx = 0, y = 20 \text{ so that pt.} (0,20)$$
  
 $put y = 0, x = 10 \text{ so the pt.} (10,0)$ 

$$(v) \Rightarrow put \ x = 0, y = 8 \ so \ the \ pt. (0, 8)$$
  
put  $y = 0, x = 15 \ so \ the \ pt (15, 0)$ 

$$(vi) \Rightarrow put \ x = 0, y = 11 \ so \ the \ pt \ (0.11)$$
  
 $put \ y = 0, x = 11 \ so \ the \ pt. \ (11,0)$ 

Test pt(0,0): we test (i), (ii) and (iii) at (0,0) so (i)  $\Rightarrow 0 \le 20 \rightarrow true$  (ii)  $\Rightarrow 0 \le 120$  $\rightarrow True$ 

$$(iii)$$
 ⇒  $0 \le 11 \rightarrow true$ 

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### Corner point.

We find pt. of intersection of lines  $l_1$ ,  $l_3$  also  $l_2$  and  $l_3$ 

$$\begin{array}{c} l_1; \ 2x+y=20 \rightarrow (i) \\ l_2; x+y=11 \rightarrow (ii) \\ \text{By2}(ii)-(i) \quad \Rightarrow \quad 2x+2y=22 \\ \underline{ +2x\pm y=\pm 20} \\ \overline{y=2 \ put \ in \ (ii)x=9} \end{array}$$

So

(9,2) is the pt. of intersection of lines (i) and (i)

Also 
$$l_2$$
;  $8x + 15y = 120 \rightarrow (iii)$   
 $l_3$ ;  $x + y = 11 \rightarrow (iv)$   
By  $(8(iv) - (iii)) \Rightarrow 8x + 8y = 88$   
 $\pm 8x \pm 15y = \pm 120$   
 $-7y = -32 \Rightarrow y = \frac{32}{7} put in(iv)$   
 $\Rightarrow x + \frac{32}{7} = 11 = 11 - \frac{32}{7} = \frac{77 - 32}{7} = \frac{45}{7}$ 

 $So\left(\frac{45}{7}, \frac{32}{7}\right)$  is pt of intersection of lines (i) and (ii)thus corner pt. of feasible region are  $(0,0), (9,2), \left(\frac{45}{7}, \frac{32}{7}\right)$  and (0,8)

#### **Linear programing**

#### **Objective function:**

A function which is to be maximized or minimized is called an objective function:

#### **Optimal solution:**

The feasible solution which maximizes or minimize the objective function is called optimal solution.

# **Procedure for finding optimal:**

#### **Solution:**

- (i) Graph the solution set of linear inequality constants to determine feasible region.
- (ii) Find the corner points of the feasible region.
- (iii) Evaluate the objective function at each corner point to find the optimal solution:

# Exercise No.5.3

#### **Question No.1**

Maximize 
$$f(x, y) = 2x + 5y$$
 subject to the constraints  $2y - x \le 8$ ;  $x - y \le 4$ ;  $x \ge 0$ ,  $y => 0$ 

#### Solution:

$$-x + 2y \le 8 \rightarrow (i) \quad x - y \le 4 \rightarrow (ii)$$

$$the \ associated \ eqs. \ of \ (i) \ and \ (ii) \ are$$

$$l_1; -x + 2y = 8 \rightarrow (iii), \quad l_2; \quad x - y = 4 \rightarrow (iv)$$

$$(iii) \Rightarrow put \ x = 0, y = 4 \ so \ the \ pt(0,4)$$

$$put \ x = 0, y = -8 \ so \ the \ pt(-8,0)$$

$$(iv) \Rightarrow put \ x = 0, y = -4 \ so \ the \ pt(0,2)$$

$$put \ y = 0, x = 4 \ so \ the \ pt(4,0)$$

$$Test \ pt(0,0): we \ test \ (i) \ and \ (ii) \ at \ (0,0) \ so$$

$$(i) \Rightarrow 0 \le 8 \rightarrow true \ (ii) \Rightarrow 0 \le 4 \rightarrow true.$$

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### Corner point:

We find pt. of intersection of lines  $l_1$ ,  $l_2$  so

$$l_1; -x + 2y = 8 \rightarrow (i)$$

$$x - y = 4 \rightarrow (iii)$$

$$3y (i) + (ii) \Rightarrow y = 12 \text{ put in } (ii) \Rightarrow x = 16$$

$$60$$

(16,12) is the pt. of intersection of lines (i) and (ii) hence corner pts. of feasible region are (o, o) (4,0), (16,2) and (0,4).

#### Optimal solution:

we find valves of f(x, y)= 2x + 5y at corner pts. f(0,0) = 2(0) + 5(0) = 0, f(4,0) = 2(4) + 5(0) = 8 f(16,12) = 2(16) + 5(12) = 92, f(0,4) = 2(0) + 5(11) = 20

Thus f(x, y) hax maximum value 92 at (16,12)

#### **Question No.2**

Maximize 
$$f(x,y)=x+3y$$
 subject to constraints  $2x+5y\leq 30, 5x+4y\leq 20, \qquad x\geq 0, y\geq 0$  Solution:

$$2x + 5y \le 30 \rightarrow (i)$$
  $5x + 4y \le 20 \rightarrow (ii)$   
the associated eqs. of (i) and (ii) are  
 $l_1; 2x + 5y = 30 \rightarrow (iii), l_2; 5x + 4y = 20$   
 $\rightarrow (iv)$ 

(iii) 
$$\Rightarrow$$
 put  $x = 0$ ,  $y = 6$  so the pt(0,6)  
put  $x = 0$ ,  $y = 15$  so the pt(15,0)

$$(iv) \Rightarrow put \ x = 0, y = 5 \ so \ the \ pt \ (0,5)$$
  
 $put \ y = 0, x = 4 \ so \ the \ pt \ (4,0)$ 

Test pt(0,0): we test (i) and (ii) at (0,0) so (i)  $\Rightarrow 0 \leq 30 \rightarrow true$  (ii)  $\Rightarrow 0 \leq 20 \rightarrow true$ .

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### **Corner point:**

Corner points o feasible region are (0,0), (4,0) and (0,5)

#### **Optimal solution:**

We find valves of f(x, y) = x +

3y at corner pts.

$$f(0,0) = 0 + 3(0) = 0, f(4,0) = 4 + 3(0) = 4$$
  
 $f(0,5) = 0 + 3(5)$   
 $= 15$ , so  $f(x,y)$  has maximum  
value a5 at  $(0,5)$ 

#### **Question No.3**

Maximize z = 2x +

3y subject to constraints

$$2x + 4y \le 12; 2x + y \le 4; 2x - y \le 4;$$
  
 $x \ge 0, y \ge 0$ 

#### Solution:

$$3x + 4y \le 12 \rightarrow (i), 2x + y \le 4 \rightarrow (ii)$$
$$2x - y \le 4 \rightarrow (iii)$$

the associated eqs. of (i)and (ii)are

$$l_1$$
;  $3x + 4y = 12 \rightarrow (iv)$ ,  $l_2$ ;  $2x + y = 4 \rightarrow (v)$   
 $l_3$ ;  $2x + y = 4 \rightarrow (vi)$ 

$$(iv) \Rightarrow put \ x = 0, y = 3 \ so \ the \ pt(0,3)$$

$$put \ x = 0, y = 4 \ so \ the \ pt(4,0)$$
  
(v)  $\Rightarrow put \ x = 0, y = 4 \ so \ the \ pt(0,4)$ 

$$put \ y = 0 \ , x = 2 \ so \ the \ pt(2 \ ,0)$$

$$(vi) \Rightarrow putx = 0y = -4$$
 so the pt.  $(0, -4)$   
put  $y = 0, x = 1$  so the pt.  $(2,0)$ 

Test

$$pt(0,0)$$
: we test (i), (ii) and (iii) at (0,0) so  
(i)  $\Rightarrow 0 \le 12 \rightarrow true$  (ii)  $\Rightarrow 0 \le 4 \rightarrow true$ .  
(iii)  $\Rightarrow 0 \le 4 \rightarrow true$ 

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



# **Corner point:**

We find pt.of intersection of lines  $l_1, l_2$ . so

$$l_1; 3x + 4y = 12 \rightarrow (i)$$

$$2x + y = 4 \to (ii)$$

By4(ii) – (i) 
$$\Rightarrow$$
 8x + 4y = 16  
+3x + 4y = +12

$$\frac{5x \pm 4y = \pm 1}{5x = 4}$$

$$\Rightarrow x = \frac{4}{5} put in (ii)$$

$$2\left(\frac{4}{5}\right) + y = 4 \Rightarrow y - \frac{8}{5} = \frac{12}{5}$$

so  $\left(\frac{4}{5}, \frac{12}{5}\right)$  is the pt. of intersection of lines

(i)and . Hence corner pt. of festible region are

$$(0,0),(2,0),(\frac{4}{5},\frac{12}{5})$$
 and  $(0,3)$ .

#### **Optimal solution:**

We find valves of z = 2x + 3y at corner pts. (0,0), Z = 2(0) + 3(0) = 0, (2,0), z = 2(2) + 3(2,0)

3(0)

$$\left(\frac{4}{3}, \frac{12}{3}\right), Z = 2\left(\frac{4}{5}\right) + 3\left(\frac{12}{5}\right) = \frac{8}{5} + \frac{36}{5} = \frac{44}{5}$$

$$= 8.8$$

$$(0,3), Z = 2(0) + 3(3) = 9$$

So z = 2x +

3y has maximum value 9 at (0,3)

Q4. Minimize z=2x+y subject to the constraints  $x+y\geq 3, 7x+5y\leq 35$   $x\geq 0, y\geq 0$ 

#### **Solution:**

$$x + y \ge 3 \rightarrow (i), 7x + 5y \le 35 \rightarrow (ii)$$
  
the associated eqs. of (i) and (ii) are  
 $l_1; x + y = 3 \rightarrow (iii), \ l_2; 7x + 5y = 35 \rightarrow (iv)$   
(iii)  $\Rightarrow$  put  $x = 0, y = 3$  so the pt(0,3)  
put  $x = 0, y = 3$  so the pt(3,0)  
(iv)  $\Rightarrow$  put  $x = 0, y = 7$  so the pt (0,7)  
put  $y = 0, x = 5$  so the pt(5,0)  
Test pt(0,0): we test (i) and (ii) at (0,0) so  
(i)  $\Rightarrow 0 \ge 3 \rightarrow false (ii) \Rightarrow 0 \le 35 \rightarrow true$ .

# Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### **Corner point:**

Corner point of feasible region are (3,0)(5,0), (o,7) and (0,3)

#### Optimal solution:

we find valves of Z = 2x + y at corner pts. (3,0), x = 2(3) + 0 = 6, (5,0), z = 2(5) + 0 = 10(0,4), z = 2(0) + 7 = 7, (0,3), z = 2(0) + 3 = 3So, z = 2x + y has minimum value 3 at (0,3)?

# Question No.5 Maximize the function defined constraints $2x + y \le 8$ ; $x + 2y \le 14$ ; $x \ge 0$ , $y \ge 0$ Solution:

$$2x + y \le 8 \to (i), x + 2y \le 14 \to (ii)$$
  
the associated eqs. of (i) and (ii) are  
 $l_1; 2x + y = 8 \to (iii), \ l_2; x + 2y = 14 \to (iv)$   
(iii)  $\Rightarrow$  put  $x = 0, y = 8$  so the pt(0,8)  
put  $x = 0, y = 4$  so the pt(4,0)  
(iv)  $\Rightarrow$  put  $x = 0, y = 14$  so the pt (0,14)  
put  $y = 0, x = 7$  so the pt(7,0)  
Test pt(0,0): we test (i) and (ii) at (0,0) so  
(i)  $\Rightarrow 0 \le 8 \to true$  (ii)  $\Rightarrow 0 \le 14 \to true$ .

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also 
$$x \ge 0, y \ge$$

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.



#### **Corner point:**

We find pt. of intersection of lines  $l_1$ ,  $l_2$  so

$$l_{1}; 2x + y = 8 \to (i)$$

$$x + 2y = 14 \to (ii)$$
By  $2(ii) + (i) \Rightarrow 2x + 4y = 28$ 

$$\frac{\pm 2x \pm 2y = 14}{3y = 20}$$

$$y = \frac{20}{3} \text{ put in } (i)$$

$$2x + \frac{20}{3} = 8 \Rightarrow 2x = 8 - \frac{20}{3} \Rightarrow 2x = \frac{4}{3}$$

$$\Rightarrow x = \frac{4}{6} = \frac{2}{3}$$

so  $\left(\frac{2}{3}, \frac{20}{3}\right)$  is the pt. of intersection of lines (i) and (ii). Hence coner pts. of feasible region are  $(0,0), (4,0), \left(\frac{2}{3}, \frac{20}{3}\right)$  and (0,8).

#### **Optimal solution:**

We find valves of f(x, y) = 2x + 3y at corner pts. f(0,0) = 2(0) + 2(0) = 0, f(4,0) = 2(4) + 3(0) = 8 $f\left(\frac{2}{3}, \frac{20}{3}\right) = 2\left(\frac{2}{3}\right) + 3\left(\frac{20}{3}\right) = \frac{64}{3} = 21.33$ 

$$f(0,7) = 2(0) + 3(7) = 21$$
  
So  $f(x,y) = 2x + 3y$ 

Has maximum value at  $\left(\frac{2}{3}, \frac{20}{3}\right)$ 

#### **Question No.6**

Minimize z = 3x + y; subject to constraints:  $3x + 5y \ge 15$ ;  $x + 6y \ge 9$ ,  $x \ge 0$ ,  $y \ge 0$ 

#### Solution:

$$3x + 5y \ge 15 \to (i)$$
$$x + 6y \ge 9 \to (ii)$$

the associated eqs. of (i) and (ii) are  $l_1$ ;  $3x + 5y = 15 \rightarrow$  (iii),  $l_2$ ;  $x + 6y = 9 \rightarrow$  (iv) (iii)  $\Rightarrow$  put x = 0, y = 3 so the pt(0,3) put x = 0, y = 5 so the pt(5,0)

$$(iv) \Rightarrow put \ x = 0, y = \frac{3}{2} \ so \ the \ pt \left(0, \frac{3}{2}\right)$$

 $put \ y = 0 \ , x = 9 \ so \ the \ pt(9,0)$ 

Test pt.(0,0): we test (i) and (ii) at (0,0) so

 $(i) \Rightarrow 0 \ge 15 \rightarrow false \ (ii) \Rightarrow 0 \ge 9 \rightarrow false$ 

#### Feasible region:

The feasible region of the given system is the intersection of the graphs of (i) and (ii).

Also  $x \ge 0, y \ge$ 

0 indicates that graph of solution Set in 1st Quadrant as shown in fig.

#### **Corner point:**

Corner pts. of feasible region are (9, 0), (0,3)



# Optimal solution:

we find valves of z = 3x + y at corner pts.

$$(0,3), z = 3(0) + 3 = 3$$
  
 $(9,0), z = 3(9) + 0 = 27$ 

So z = 3x + y has minmum value 3 at (0,3)