10th CLASS
 MATH

CHAPTER 7

SOLUTION
 NOTES

Exercise 7.1

Q.1: Locate the following angles:
i. 30^{0}

ii. $\quad 22 \frac{1^{0}}{2}$

iv. $\quad-225^{0}$

vi. $\quad-120^{0}$

vii. -150^{0}

viii. $\quad-225^{0}$

Q.2:

Express the following sexagesiml measures of angles in decimal form.
i. $45^{0} 30^{\prime}$

Solution:

$$
\begin{aligned}
= & 45^{\circ}+\frac{30^{0}}{60^{0}} \\
= & 45^{\circ}+0.5^{0} \\
& =45.5^{\circ}
\end{aligned}
$$

ii. $\quad 60^{0} 30^{\prime} 30^{\prime \prime}$

Solution:

$$
\begin{gathered}
=60^{0}+\frac{30^{o}}{60^{0}}+\frac{30^{o}}{60^{o} \times 60^{o}} \\
=60^{\circ}+0.5^{\circ}+0.008^{0} \\
=60.508^{0}
\end{gathered}
$$

iii. $125^{\circ} 22^{\prime} 50^{\prime \prime}$

Solution:

$$
\begin{gathered}
=125^{o}+\frac{22^{o}}{60^{o}}+\frac{50^{o}}{60^{o} \times 60^{o}} \\
=125^{0}+0.367^{0}+0.0139^{o} \\
=125.3808^{0}
\end{gathered}
$$

Q.3: Express the following in $D^{o} M^{\prime} S^{\prime \prime}$:
i. 47.36^{0}

Solution:

$$
\begin{gathered}
=47^{0}+0.36^{0} \\
=47^{0}+(0.36 \times 60)^{\prime} \\
=47^{0}+21^{\prime}+(0.6 \times 60)^{\prime \prime} \\
=47^{0}+21^{\prime}+36^{\prime \prime} \\
=47^{0} 21^{\prime} 36^{\prime \prime}
\end{gathered}
$$

ii. $\quad 125.45^{\circ}$

Solution:

$$
\begin{gathered}
=125^{0}+0.45^{0} \\
=125^{0}+(0.45 \times 60)^{\prime} \\
=225^{0}+27^{\prime} \\
225^{0} 27^{\prime} 0^{\prime \prime}
\end{gathered}
$$

iii. 225.75°

Solution:

$$
\begin{gathered}
=225^{o}+o .75^{o} \\
=125^{\circ}+(0.75 \times 60)^{\prime} \\
=125^{0}+45^{\prime} \\
=225^{\circ} 45^{\prime} 0^{\prime \prime}
\end{gathered}
$$

iv. $\quad-22.5^{0}$

Solution:

$$
\begin{gathered}
=-\left[22^{0}+0.5^{0}\right] \\
=-\left[22^{0}+(0.5 \times 60)^{\prime}\right] \\
=-\left[22^{o}+30^{\prime}\right] \\
=-22^{0} 30^{\prime}
\end{gathered}
$$

v. $\quad-67.58^{0}$

Solution:

$$
\begin{gathered}
-\left(67^{\circ}+0.58^{0}\right) \\
=-\left[67^{0}+(0.58 \times 60)^{\prime}\right] \\
=-\left[67^{0}+34^{\prime}+0.8^{\prime}\right] \\
=\left[67^{0}+34^{\prime}+(0.8 \times 60)^{\prime \prime}\right] \\
=-\left[67^{0}+34^{\prime}+48^{\prime \prime}\right] \\
=-67^{\circ} 34^{\prime} 48^{\prime \prime}
\end{gathered}
$$

vi. $\quad 315.18^{0}$

$$
\begin{gathered}
=315^{o}+0.18^{o} \\
=315^{0}+(0.18 \times 60)^{\prime} \\
=315+10.8^{\prime} \\
=315^{\circ}+10^{\prime}+(0.8 \times 60)^{\prime \prime} \\
=315^{0}+10^{\prime}+48^{\prime \prime} \\
=315^{\circ} 10^{\prime} 48^{\prime \prime}
\end{gathered}
$$

Q.4: Express the following angles into radians.
i. $\quad 30^{\circ}$

$$
\begin{gathered}
=30 \frac{\pi}{180} \text { radians } \\
=30 \frac{\pi}{30 \times 6} \text { radians } \\
=\frac{\pi}{6} \text { radians }
\end{gathered}
$$

ii. 60^{0}

$$
\begin{gathered}
=60 \times \frac{\pi}{180} \text { radian } \\
=60 \frac{\pi}{60 \times 3} \text { radian } \\
=\frac{\pi}{3} \text { radians }
\end{gathered}
$$

iii. 135°

Solution:

$$
\begin{gathered}
=225 \frac{225^{0}}{180} \text { radians } \\
=45 \times 3 \frac{\pi}{45 \times 4} \text { radians } \\
=\frac{3 \pi}{4} \text { radians }
\end{gathered}
$$

iv. 225^{0}

Solution: 225°

$$
\begin{gathered}
=225 \frac{\pi}{180} \text { radians } \\
=45 \times 5 \frac{\pi}{45 \times 4} \text { radians } \\
=\frac{5 \pi}{4} \text { radians }
\end{gathered}
$$

v. -150^{0}

Solution:

$$
\begin{gathered}
=-150 \frac{\pi}{180} \text { radians } \\
=-5 \times 30 \frac{\pi}{30 \times 6} \text { radians } \\
=\frac{-5 \pi}{6} \text { radians }
\end{gathered}
$$

vi. $\quad-225^{0}$

Solution:

$$
\begin{gathered}
=-225 \frac{\pi}{180} \text { radians } \\
=-5 \times 45 \frac{\pi}{45 \times 4} \text { radians } \\
=\frac{-5 \pi}{4} \text { radians }
\end{gathered}
$$

vii. 300^{0}

Solution:

$$
\begin{gathered}
=300 \frac{\pi}{180} \text { radians } \\
=60 \times 5 \frac{\pi}{60 \times 3} \text { radians } \\
=\frac{5 \pi}{3} \text { radians }
\end{gathered}
$$

viii. $\quad 315^{0}$

Solution:

$$
\begin{gathered}
=315 \frac{\pi}{180} \text { radians } \\
=45 \times 7 \frac{\pi}{45 \times 4} \text { radians } \\
=\frac{7 \pi}{4} \text { radians }
\end{gathered}
$$

Q.5: Convert each of the following to degrees.

i. $\frac{3 \pi}{4}$

Solution:

$$
\begin{aligned}
& \frac{3 \pi}{4} \text { radians } \\
= & \frac{3 \pi}{4} \frac{180}{\pi} \text { degree } \\
= & \frac{3 \pi}{4} \frac{180}{\pi} \text { degree } \\
= & 3 \times 45 \text { degrees } \\
= & 135^{\circ}
\end{aligned}
$$

ii. $\frac{5 \pi}{6}$

Solution:

$$
\begin{aligned}
& \frac{5 \pi}{6} \text { radians } \\
= & \frac{5 \pi}{6} \frac{180}{\pi} \text { degree } \\
= & \frac{5 \pi}{6} \frac{180}{\pi} \text { degree } \\
= & 5 \times 30 \text { degrees } \\
= & 150^{\circ}
\end{aligned}
$$

iii. $\frac{7 \pi}{8}$

Solution:

$$
\begin{aligned}
& \frac{7 \pi}{8} \text { radians } \\
= & \frac{7 \pi}{8} \frac{180}{\pi} \text { degree }
\end{aligned}
$$

$$
\begin{gathered}
=\frac{7 \times 180}{8} \text { degree } \\
=\frac{1260}{8} \text { degrees } \\
=157.5^{\circ}
\end{gathered}
$$

iv. $\frac{13 \pi}{16}$

Solution:

$$
\begin{aligned}
& \frac{13 \pi}{16} \text { radians } \\
= & \frac{13 \pi}{16} \frac{180}{\pi} \text { degree } \\
= & \frac{13 \times 180}{16} \text { degree } \\
= & \frac{2340}{16} \text { degrees } \\
= & 146.25^{\circ}
\end{aligned}
$$

v. 3 radians

Solution:

$$
\begin{aligned}
& 3 \text { radians } \\
= & 3 \frac{180}{\pi} \text { degree } \\
= & \frac{540}{\pi} \text { degrees } \\
= & 171.887^{\circ}
\end{aligned}
$$

vi. 4.5

Solution:

$$
\begin{aligned}
& 4.5 \text { radians } \\
= & 4.5 \frac{180}{\pi} \text { degree } \\
= & \frac{810}{\pi} \text { degrees } \\
= & 257.831^{0}
\end{aligned}
$$

vii. $\quad-\frac{7 \pi}{8}$

Solution:

$$
\begin{aligned}
& -\frac{7 \pi}{8} \text { radians } \\
= & -\frac{7 \pi}{8} \frac{180}{\pi} \text { degree } \\
= & \frac{-1260}{8} \text { degrees } \\
= & 157.5^{\circ}
\end{aligned}
$$

viii. $\quad-\frac{13}{16} \pi$

Solution:

$$
\begin{aligned}
& -\frac{13 \pi}{16} \text { radians } \\
= & -\frac{13 \pi}{16} \frac{180}{\pi} \text { degree } \\
= & \frac{-2340}{16} \text { degrees } \\
= & 146.25^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\frac{I}{r}=\theta \\
\frac{4.5}{2.5}=\theta \\
\theta=1.8 \text { radian }
\end{gathered}
$$

Question No. 2 find I when

i. $\theta=180^{\circ}, r=4.9 \mathrm{~cm}$

Solution:
As θ should be in radius so

$$
\begin{gathered}
\theta=180^{0} \\
=180 \frac{\pi}{180} \text { radian } \\
=\pi \text { radian }
\end{gathered}
$$

Using rule $I=r \theta$

$$
\begin{gathered}
=4.9 \mathrm{~cm} \times \pi \\
=15.4 \mathrm{~cm}
\end{gathered}
$$

ii. $\quad \theta=60^{\circ} 30^{\prime}, \quad r=15 \mathrm{~mm}$

Solution:

As θ should be in radian, so

$$
\begin{gathered}
\theta=60^{\circ} 30^{\prime} \\
=60^{\circ}+\frac{30^{0}}{60^{\circ}} \\
=60.5^{\circ} \\
=60.5 \frac{\pi}{180} \text { radian } \\
\theta=1.056 \text { radian } \\
\theta=1.056 \text { radian } \\
\text { using rule } I=r \theta \\
=15 \mathrm{~mm} \times 1.056 \\
=15.84 \mathrm{~mm}
\end{gathered}
$$

Questions No. 3 find r, when

$$
\text { i. } \quad I=4 c m, \quad \theta=\frac{1}{4} \text { radian }
$$

Solution:

$$
\begin{gathered}
U \operatorname{sing} \text { Rule } I=r \theta \\
4 \mathrm{~cm}=r \frac{1}{4} \\
4 \mathrm{~cm} \times 4=r \\
r=16 \mathrm{~cm}
\end{gathered}
$$

ii. $\quad I=52 \mathrm{~cm}, \theta=45^{\circ}$

Solution:As θ should be in radians.

$$
\begin{gathered}
\theta=45^{\circ} \\
=45 \frac{\pi}{180} \text { radian }
\end{gathered}
$$

$$
=\frac{\pi}{4} \text { radian }
$$

Now using rule $I=r \theta$

$$
\begin{aligned}
& 52 \mathrm{~cm}=r \frac{\pi}{4} \\
& \frac{52 \mathrm{~cm} \times 4}{\pi}=r \\
& r=66.21 \mathrm{~cm}
\end{aligned}
$$

Question No. 4 In a circle of radius 12 cm , find the length of an arc which subtends a
Central angle $\theta=1.5$ radian
Solution:

$$
\begin{gathered}
\text { Radius }=r=12 \mathrm{~cm} \\
\text { Arc length }=?
\end{gathered}
$$

$$
\text { Central angle }=\theta=1.5 \text { radian }
$$

Using rule $I=r \theta$

$$
\begin{gathered}
I=12 m \times 1.5 \\
I=18 m
\end{gathered}
$$

Question No. 5 In a circle of radius 10 m , find the distance travelled by a point moving on this circle if the point makes 3.5 revolution.
Solution:
Radius $=r=10 \mathrm{~m}$
Number of revolutions $=3.5$
Angle of one revolution $=2 \pi$
Angle of 3.5 revolution $=\theta$

$$
\begin{gathered}
=3.5 \times 2 \pi \text { radian } \\
\theta=7 \pi \text { radian }
\end{gathered}
$$

Distance travelled= $I=$?

$$
\begin{gathered}
\text { Using rule } I=r \theta \\
\qquad \begin{array}{c}
I=10 m \times 7 \pi \\
I=220 m
\end{array}
\end{gathered}
$$

Question No. 6 What is the circular measure of the angle between the hands of the watch at $3 \mathrm{O}^{\prime}$ clock?

Solution:

At 30^{\prime} clock the minute hand will be at 12 and hour hand will be at 3 i.e the angle between the hands of watch will be one quarter of the central angle of full circle.

$$
\begin{gathered}
\text { i.e }=\frac{1}{4} \text { of } 360^{\circ} \\
\frac{1}{4} \times 360^{\circ} \\
=90^{\circ} \\
=90 \frac{\pi}{180} \text { radian } \\
=\frac{\pi}{2} \text { radian }
\end{gathered}
$$

Question No. 7 What is the length of arc APB?

Solution:

From the figure we see that

$$
\begin{aligned}
& \text { Radius }=r=8 \mathrm{~cm} \\
& \text { Central angle }=\theta \\
& \quad=90^{\circ} \\
& \quad=\frac{\pi}{2} \text { radian }
\end{aligned}
$$

Arc length $I=$?
By rule $I=r \theta$

$$
\begin{aligned}
& I=8 \mathrm{~cm} \times \frac{\pi}{2} \\
& I=4 \mathrm{~cm} \times \pi \\
& I=12.57 \mathrm{~cm}
\end{aligned}
$$

So, length of arc APB is 12.57 cm
Question No. 8 In a circle 12 cm , how long an arc subtended a central angle of 84^{0} ?

Solution:

Radius $=r=12 \mathrm{~cm}$
Arc length $=I=$?
Central angle $=\theta=84^{\circ}$
$=84 \frac{\pi}{180}$ radian
$=1.466$ radian

Now by rule $I=r \theta$
$12 \mathrm{~cm} \times 1.466$
$=17.6 \mathrm{~cm}$
Question No. 9 Find the area of sector OPR
(a)

Radius $=r=6 \mathrm{~cm}$
Central angle $=\theta=60^{\circ}$

$$
\begin{gathered}
=60 \frac{\pi}{180} \text { radian } \\
=\frac{\pi}{3} \text { radian }
\end{gathered}
$$

Area of sector $=$?
As area of sector $=\frac{1}{2} r^{2} \theta$

$$
\begin{gathered}
=\frac{1}{2} \times(6 \mathrm{~cm})^{2} \times \frac{\pi}{3} \\
=\frac{1}{6} \times 36 \mathrm{~cm}^{2} \times \pi \\
=6 \pi \mathrm{~cm}^{2} \\
=18.85 \mathrm{~cm}^{2}
\end{gathered}
$$

(b)

Radius $=r=20 \mathrm{~cm}$
Central angle $=\theta=45^{\circ}$

$$
\begin{gathered}
=45 \frac{\pi}{180} \text { radian } \\
=\frac{\pi}{4} \text { radian }
\end{gathered}
$$

Area of sector $=$?

Area of Sector $=\frac{1}{2} r^{2} \theta$

$$
\begin{gathered}
=\frac{1}{2}(20 \mathrm{~cm})^{2} \times \frac{\pi}{4} \\
=\frac{400 \mathrm{~cm}^{2}}{8} \times \pi \\
=50 \pi \mathrm{~cm}^{2} \\
=157.1 \mathrm{~cm}^{2}
\end{gathered}
$$

Question No. 10 Find area of sector inside a central angle of 20^{0} in a circle of radius 7 m .

Solution:

Area of sector $=$?

$$
\text { Radius }=r=7 m
$$

Central angle $=\theta=20^{\circ}$

$$
\begin{gathered}
=20 \frac{\pi}{180} \text { radian } \\
=\frac{\pi}{9} \text { radian }
\end{gathered}
$$

Area of sector $=\frac{1}{2} r^{2} \theta$

$$
\begin{gathered}
=\frac{1}{2} \times(7 m)^{2} \times \frac{\pi}{9} \\
=\frac{49 \pi}{18} m^{2} \\
=8.55 m^{2}
\end{gathered}
$$

Question No. 11 Sehar is making skirt. Each panel of this skirt is of the shape shown shaded in the diagram. How much material (cloth) is required for each panel?

Solution:

Central angle $=\theta=80^{\circ}$

$$
\begin{gathered}
=80 \frac{\pi}{180} \text { radian } \\
=\frac{4 \pi}{9} \text { radian }
\end{gathered}
$$

Radius of bigger sector $=R=(65+10) \mathrm{cm}$

$$
R=66 \mathrm{~cm}
$$

Radius of smaller sector $=r=10 \mathrm{~cm}$

$$
\text { Shaded area }=\text { ? }
$$

Area of bigger sector $=\frac{1}{2} R^{2} \theta$

$$
=\frac{1}{2} \times(66 \mathrm{~cm})^{2} \times \frac{4 \pi}{9}
$$

$$
\begin{gathered}
=4356 \mathrm{~cm}^{2} \times \frac{2 \pi}{9} \\
968 \pi \mathrm{~cm}^{2}
\end{gathered}
$$

Area of smaller sector $=\frac{1}{2} r^{2} \theta$

$$
\begin{gathered}
=\frac{1}{2} r^{2} \theta \\
=\frac{1}{2}(10 \mathrm{~cm})^{2} \times \frac{4 \pi}{9} \\
=\frac{200}{9} \pi c m^{2}
\end{gathered}
$$

Shaded area $968 \pi-\frac{200}{9} \pi$

$$
\begin{aligned}
= & \frac{8712 \pi-200 \pi}{9} \\
& =\frac{8512}{9} \pi \mathrm{~cm}^{2} \\
& =2971.25 \mathrm{~cm}^{2}
\end{aligned}
$$

Question No. 12 Find the area of a sector with central angle of $\frac{\pi}{5}$ radian in a circle of radius 10 cm .
Solution:
Area of sector $=$?

$$
\begin{gathered}
\text { Central angle }=\theta=\frac{\pi}{5} \text { radian } \\
\text { Radius }=r=10 \mathrm{~cm}
\end{gathered}
$$

Area of sector $=\frac{1}{2} r^{2} \theta$

$$
\begin{gathered}
=\frac{1}{2}(10 \mathrm{~cm})^{2} \times \frac{\pi}{5} \\
=\frac{1}{10} \times 100 \mathrm{~cm}^{2} \times \pi \\
=\frac{1}{10} \times 100 \mathrm{~cm}^{2} \times \pi \\
=10 \pi \mathrm{~cm}^{2} \\
=31.43 \mathrm{~cm}^{2}
\end{gathered}
$$

Question No. 13 The area of sector with central angle θ in circle of radius $2 m$ is 10 square meter. Find θ in radius

Solution:

Area of sector $=10 \mathrm{~m}^{2}$
Radius $=r=2 m$
Central angle $=\theta=$?
As area of sector $=\frac{1}{2} r^{2} \theta$

$$
\begin{gathered}
10 m^{2}=\frac{1}{2}(2 m)^{2} \theta \\
10 m^{2}=\frac{1}{2}\left(4 m^{2}\right) \theta \\
10 m^{2}=20 m^{2} \\
\theta=\frac{10 m^{2}}{2 m^{2}} \\
\theta=5 \text { radian }
\end{gathered}
$$

Exercise 7.3

Question No. 1 Locate each of the following angles in standard position using a protector or fair free hand guess, also find a positive and a negative angle conterminal with each given angle:
Solution:
i. $\quad 170^{\circ}$

Positive coterminal angle $=360^{\circ}+170^{\circ}$

$$
=530^{\circ}
$$

Negative coterminal angle $=-190^{\circ}$

ii. $\quad 780^{\circ}$

Positive coterminal angle $780^{\circ}+2\left[360^{\circ}\right]=$ 60^{0}
Negative coterminal angle $=-300^{\circ}$

iii. $\quad-100^{0}$

Positive coterminal angle 260°
Negative coterminal angle $=-360^{\circ}-100^{\circ}$

iv. $\quad-500^{\circ}$

Positive coterminal angle $=220^{\circ}$
Negative coterminal angle $=-140^{\circ}$

$$
-90^{\circ}
$$

Question No. 2 Identity closest quadrantile angles between which the following angles lie.
i. $\quad 156^{0}$

Answer: 90° and 180^{0}
ii. 318^{0}

Answer: 270^{0} and 360°
iii. 572^{0}

Answer: 540° and 630°
iv. -330°

Answer: 0° and 90°
Question No. 3 Write the closest quadrantal angles between which the angles lie. Write your answer in radian measure.
i. $\quad \frac{\pi}{3}$

Answer : o and $\frac{\pi}{2}$
ii. $\frac{3 \pi}{4}$

Answer: $\frac{\pi}{2}$ and π
iii. $\quad-\frac{\pi}{2}$

Answer: 0 and $-\frac{\pi}{2}$
iv. $\quad-\frac{3 \pi}{4}$

Answer: $-\frac{\pi}{2}$ and $-\pi$

Question No. 4 in which quadrant $\boldsymbol{\theta}$ lies, when
i. $\sin \theta>0, \tan <0$

Answer II quadrant
ii. $\cos \theta<0, \sin \theta<0$

Answer: III quadrant
iii. $\sec \theta>0, \sin \theta<0$

Answer: IV quadrant
iv. $\cos \theta<0, \tan \theta<0$

Answer:II quadrant
v. $\operatorname{cosec} \theta>0, \cos \theta>0$

Answer:I quadrant
vi. $\sin \theta<0, \sec \theta<0$

Answer: III quadrant

Question No. 5 Fill in the blanks:
i. $\quad \cos \left(-150^{\circ}\right)=$ \qquad $\cos 150^{\circ}$
ii. $\quad \sin \left(-310^{\circ}\right)=$ \qquad $\sin 310^{\circ}$
iii. $\tan \left(-210^{\circ}\right)=$ \qquad $\tan 210^{\circ}$
iv. $\quad \cot \left(-45^{\circ}\right)=$ \qquad $\cot 45^{\circ}$
v. $\sec \left(-60^{\circ}\right)=$ \qquad $\sec 60^{\circ}$
vi. $\quad \operatorname{cosec}\left(-137^{0}\right)=$ \qquad $\operatorname{cosec} 137^{\circ}$
Answers:
i. $+v e$
ii. $-v e$
iii. -ve
iv. $-v e$
v. $+v e$
vi. $-v e$

Question No. 6 The given point p lies on the terminal side of $\boldsymbol{\theta}$, Find quadrant of θ and all six trigonometric ratios.
i. $(-2,3)$
we have $x=-2$ and $y=3$, so θ lies in quadrant $I I$.

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
=\sqrt{(-2)^{2}+(3)^{2}} \\
=\sqrt{4+9} \\
=\sqrt{13}
\end{gathered}
$$

Thus,

$$
\begin{array}{c|r}
\sin \theta=\frac{y}{r}=\frac{3}{\sqrt{13}} & \operatorname{cosec} \theta=\frac{\sqrt{13}}{3} \\
\cos \theta=\frac{x}{r}=-\frac{2}{\sqrt{13}} & \sec \theta=-\frac{\sqrt{13}}{2} \\
\tan \theta=\frac{y}{x}=-\frac{3}{2} & \cot \theta=-\frac{2}{3}
\end{array}
$$

ii. $(-3,4)$
we have $x=-3$ and $y=4$, so θ lies in quadrant III.

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
=\sqrt{(-3)^{2}+(4)^{2}} \\
=\sqrt{9+16} \\
=\sqrt{25} \\
=5
\end{gathered}
$$

Thus,

$$
\begin{array}{c|c}
\sin \theta=\frac{y}{r}=\frac{-4}{5} & \operatorname{cosec} \theta=\frac{-5}{4} \\
\cos \theta=\frac{x}{r}=\frac{-3}{5} & \sec \theta=-\frac{5}{3} \\
\tan \theta=\frac{y}{x}=\frac{4}{3} & \cot \theta=\frac{3}{4}
\end{array}
$$

iii. $(\sqrt{2}, 1)$

We have $x=\sqrt{2}$ and $y=1$ so θ lies in quadrant $I I$.

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
r=\sqrt{(\sqrt{2})^{2}+(1)^{2}} \\
=\sqrt{2+1} \\
=\sqrt{3}
\end{gathered}
$$

Thus,

$$
\begin{array}{l|l}
\sin \theta=\frac{y}{r}=\frac{1}{\sqrt{3}} & \operatorname{cosec} \theta=\sqrt{3} \\
\cos \theta=\frac{x}{r}=\frac{\sqrt{2}}{\sqrt{3}} & \sec \theta=\frac{\sqrt{3}}{\sqrt{2}} \\
\tan \theta=\frac{y}{x}=\frac{1}{\sqrt{2}} & \cot \theta=\sqrt{2}
\end{array}
$$

Question No. 7 if $\cos \theta=-\frac{2}{3}$ and terminal arm of the angle θ is in quadrant $I I$, find the valves of remaining trigonometric functions.
In any right triangles $X Y Z$
$\cos \theta=-\frac{2}{3}=\frac{x}{r}$ then $x=-2$ and $r=3$
Also,

$$
\sec \theta=\frac{1}{\cos \theta}=-\frac{3}{2}
$$

As we know

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
(3)^{2}=(-2)^{2}+y^{2}
\end{gathered}
$$

$$
9=4+y^{2}
$$

$$
y^{2}=5
$$

$$
y= \pm \sqrt{5} \text { so } y=\sqrt{5}
$$

$$
\begin{array}{c|c}
\sin \theta=\frac{y}{r}=\frac{\sqrt{5}}{3} & \operatorname{cosec} \theta=\frac{r}{y}=\frac{3}{\sqrt{5}} \\
\cos \theta=\frac{x}{r}=\frac{-2}{3} & \sec \theta=\frac{r}{x}=\frac{-3}{2} \\
\tan \theta=\frac{y}{x}=\frac{-\sqrt{5}}{2} & \cot \theta=\frac{-2}{\sqrt{5}}
\end{array}
$$

Question No. 8 if $\tan \theta=\frac{4}{3}$ and $\sin \theta<$
0 , find the valves of other trigonometric functions at θ

Solution:

As $\tan \theta=\frac{3}{4}$ and $\sin \theta$ is $-v e$, which is possible in quadrant III only. We complete the figure.

From the figure $x=-3$ and $y=-4$
By Pythagorean theorem

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
r=\sqrt{x^{2}+y^{2}} \\
r=\sqrt{(-3)^{2}+(-4)^{2}} \\
r=\sqrt{9+6} \\
r=\sqrt{25} \\
r=5
\end{gathered}
$$

Now,

$$
\begin{array}{c|c}
\sin \theta=\frac{y}{r}=-\frac{4}{5} & \operatorname{cosec} \theta=\frac{r}{y}=\frac{-5}{4} \\
\cos \theta=\frac{x}{r}=\frac{-3}{5} & \sec \theta=\frac{r}{x}=\frac{-5}{3} \\
\tan \theta=\frac{y}{x}=\frac{4}{3} & \cot \theta=\frac{3}{4}
\end{array}
$$

Question No. 9 if $\sin \theta=-\frac{1}{\sqrt{2}}$, and terminal side of the angle is not in quadrant III, find the valves of $\tan \theta, \sec \theta$ and $\operatorname{cosec} \theta$.

Solution:

As $\sin =-\frac{1}{\sqrt{2}}$ and terminal side of angle is not in III quadrant, so it lies in quadrant $I V$.

From the figure $y=-1$ and $r=\sqrt{2}$
By Pythagorean theorem

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
x^{2}=r^{2}-y^{2} \\
x=\sqrt{r^{2}-y^{2}} \\
r=\sqrt{(\sqrt{2})^{2}-(-1)^{2}} \\
r=\sqrt{2-1} \\
r=\sqrt{1} \\
r=1
\end{gathered}
$$

Now,

$$
\begin{aligned}
\operatorname{Tan} \theta & =\frac{y}{x}=-\frac{1}{1}=-1 \\
\sec \theta & =\frac{r}{x}=\frac{\sqrt{2}}{1}=\sqrt{2} \\
\operatorname{cosec} \theta & =\frac{r}{y}=\frac{\sqrt{2}}{1}=-\sqrt{2}
\end{aligned}
$$

Question No. 10 If $\operatorname{cosec} \theta=\frac{13}{12}$ and $\sec \theta>$ 0 find
The remaining trigonometric functions.

Solution:

As, $\operatorname{cosec} \theta=\frac{13}{12}$ and also $\sec \theta$ is $+v e$, which is only possible in quadrant I

From the figure $y=12$ and $r=13$
By Pythagorean theorem

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
x^{2}=r^{2}-y^{2} \\
x=\sqrt{r^{2}-y^{2}} \\
r=\sqrt{(13)^{2}-(12)^{2}} \\
r=\sqrt{169-144} \\
r=\sqrt{25} \\
r=5
\end{gathered}
$$

Now,

$$
\begin{array}{c|c}
\sin \theta=\frac{y}{r}=\frac{12}{13} & \operatorname{cosec} \theta=\frac{r}{y}=\frac{13}{12} \\
\cos \theta=\frac{x}{r}=\frac{5}{13} & \sec \theta=\frac{r}{x}=\frac{13}{5} \\
\tan \theta=\frac{y}{x}=\frac{12}{5} & \cot \theta=\frac{5}{12}
\end{array}
$$

Question No. 11 Find the valves of trigonometric functions at the indicated angles θ in the right triangles.
i.

From the figure Hypotenuse $=4$ and Base $=3$ By Pythagorean theorem we can find perpendicular.

$$
\begin{gathered}
(\text { Perp })^{2}+(\text { Base })^{2}=(\text { Hyp. })^{2} \\
(\text { perp. })^{2}+(3)^{2}=(4)^{2} \\
(\text { perp })^{2}=16-9 \\
(\text { perp })^{2}=7 \\
\text { perpendicual }=\sqrt{7}
\end{gathered}
$$

Now

$$
\begin{array}{l|c}
\sin \theta=\frac{\text { Per. }}{\text { Hyp. }}=\frac{\sqrt{7}}{4} & \operatorname{cosec} \theta=\frac{\text { Hyp. }}{\text { Per. }}=\frac{4}{\sqrt{7}} \\
\cos \theta=\frac{\text { Base }}{\text { Hyp. }}=\frac{3}{4} & \sec \theta=\frac{\text { Hyp. }}{\text { Base }}=\frac{4}{3} \\
\tan \theta=\frac{\text { Per. }}{\text { Base }}=\frac{\sqrt{7}}{3} & \cot \theta=\frac{\text { Base }}{\text { Per. }}=\frac{3}{\sqrt{7}}
\end{array}
$$

ii. From the figure

Hypertenous $=17$
Perperdicular $=8$
Base $=15$
Now

$$
\begin{array}{rlr}
\sin \theta=\frac{\text { Per. }}{\text { Hyp. }}=\frac{8}{17} & \operatorname{cosec} \theta=\frac{\text { Hyp. }}{\text { Per. }}=\frac{17}{8} \\
\cos \theta=\frac{\text { Base }}{\text { Hyp. }}=\frac{15}{17} & \sec \theta=\frac{\text { Hyp. }}{\text { Base }}=\frac{15}{17} \\
\tan \theta=\frac{\text { Per. }}{\text { Base }}=\frac{8}{15} & \cot \theta=\frac{\text { Base }}{\text { Per. }}=\frac{15}{8}
\end{array}
$$

iii. From the figure

hypotenous $=7$ Base $=3$
we can find perpendicular by Pythagorean theorem.

$$
\begin{gathered}
(\text { Base })^{2}+(\text { Per P })^{2}=(\text { Hyp. })^{2} \\
(\text { Perp. })^{2}+(3)^{2}=(7)^{2} \\
(\text { perp. })^{2}=40-9 \\
(\text { perp. })^{2}=40 \\
\text { Perp. }=\sqrt{40} \\
\text { Perp. }=\sqrt{4 \times 10}
\end{gathered}
$$

Now.

$$
\begin{array}{c|c}
\sin \theta=\frac{\text { Per. }}{\text { Hyp. }}=\frac{2 \sqrt{10}}{7} & \operatorname{cosec} \theta=\frac{\text { Hyp. }}{\text { Per. }}=\frac{2 \sqrt{10}}{\sqrt{7}} \\
\cos \theta=\frac{\text { Base }}{\text { Hyp. }}=\frac{3}{7} & \sec \theta=\frac{\text { Hyp. }}{\text { Base }}=\frac{7}{3} \\
\tan \theta=\frac{\text { Per. }}{\text { Base }}=\frac{2 \sqrt{10}}{3} & \cot \theta=\frac{\text { Base }}{\text { Per. }}=\frac{3}{2 \sqrt{10}}
\end{array}
$$

Question No. 12 Find the value of the trigonometric functions. Do not use trigonometric table or calculator.

Solution:

we know that $2 k \pi+\theta=\theta$, where $k \in Z$
i. $\tan 30^{\circ}$

$$
\begin{aligned}
30^{\circ}=30 \frac{\pi}{180} \text { radian }=\frac{\pi}{6} \text { radian } \\
\tan 30^{\circ}=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

ii. $\tan 330^{\circ}$

$$
\begin{aligned}
\tan 330^{\circ} & =\tan \left(360^{\circ}-30^{\circ}\right) \\
& =\tan 2 \pi-\frac{\pi}{6} \\
& =\tan \left(-\frac{\pi}{6}\right) \\
& =-\tan \frac{\pi}{6} \\
& =-\frac{1}{\sqrt{3}}
\end{aligned}
$$

iii. $\sec 330^{\circ}$

$$
\begin{aligned}
\sec 330^{\circ} & =\sec \left(360^{0}-30^{\circ}\right) \\
= & \sec 2 \pi-\frac{\pi}{6} \\
& =\sec -\frac{\pi}{6} \\
& =\sec \frac{\pi}{6} \\
& =\frac{2}{\sqrt{3}}
\end{aligned}
$$

iv. $\cot \frac{\pi}{4}$

$$
\begin{gathered}
=\frac{1}{\tan \frac{\pi}{4}} \\
=\frac{1}{\tan 45^{\circ}}=\frac{1}{1}=1
\end{gathered}
$$

v. $\quad \cos \frac{2 \pi}{3}$

$$
\cos \left(120^{\circ}\right)=-\frac{1}{2}
$$

vi. $\quad \operatorname{cosec} \frac{2 \pi}{3}$

$$
\begin{gathered}
\operatorname{cosec} \frac{2 \pi}{3}=\operatorname{cosec} 120^{\circ}=\frac{1}{\sin \left(120^{\circ}\right)}=\frac{1}{\frac{\sqrt{3}}{2}} \\
=\frac{2}{\sqrt{3}}
\end{gathered}
$$

vii. $\quad \cos \left(-450^{\circ}\right)$

$$
\begin{gathered}
\cos \left(-450^{\circ}\right)=\cos \left(-360^{0}-90^{\circ}\right) \\
\cos -2 \pi-\frac{\pi}{2} \\
=\cos 2(-1) \pi-\frac{\pi}{2} \\
\cos \frac{\pi}{2}=0
\end{gathered}
$$

viii. $\tan (-9 \pi)$

$$
\begin{gathered}
\tan (-9 \pi)=\tan (-8 \pi-\pi) \\
=\tan [2(-4) \pi-\pi] \\
=\tan (-8 \pi+(-\pi)) \\
=\tan (-\pi)
\end{gathered}
$$

ix. $\quad \cos \left(-\frac{5 \pi}{6}\right)$

$$
\begin{gathered}
=\cos \left(-\frac{5 \pi}{6}\right) \\
=-\cos \frac{\pi}{6}=-\frac{\sqrt{3}}{2}
\end{gathered}
$$

x. $\quad \sin \frac{7 \pi}{6}$

$$
\begin{gathered}
\sin \frac{7 \pi}{6}=\sin \left(2 \pi-\frac{5 \pi}{6}\right) \\
=\sin \left[2 \pi+\left(-\frac{5 \pi}{6}\right)\right] \\
=\sin \left(-\frac{5 \pi}{6}\right)=\sin \left(-150^{\circ}\right)=-\frac{1}{2}
\end{gathered}
$$

xi. $\quad \cot \frac{7 \pi}{6}$

$$
\begin{aligned}
\cot \frac{7 \pi}{6} & =\cot \left[2 \pi+\left(-\frac{5 \pi}{6}\right)\right] \\
& =\cot \left(-\frac{5 \pi}{6}\right) \\
=\frac{1}{\tan \left(-\frac{5 \pi}{6}\right)} & =\frac{1}{\tan \left(-150^{0}\right)}=\frac{1}{\frac{1}{\sqrt{3}}}=\sqrt{3}
\end{aligned}
$$

xii. $\quad \cos 225^{\circ}$

$$
\begin{aligned}
\cos \left(225^{\circ}\right) & =\cos \left(180^{\circ}+45^{\circ}\right) \\
= & \cos \pi+\frac{\pi}{4} \\
= & -\cos \frac{\pi}{4}=-\frac{1}{\sqrt{2}}
\end{aligned}
$$

Exercise 7.4

Things to know:

$$
\begin{gathered}
\cos ^{2} \theta+\sin ^{2} \theta=1 \\
1+\tan ^{0} \theta=\sec ^{2} \theta \\
1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta
\end{gathered}
$$

In problem 1-6 simplify each expression to a single trigonometric functions.

1. $\frac{\sin ^{2} x}{\cos ^{2} x}$

Solution:

$$
\because \frac{\sin ^{2} x}{\cos ^{2} x}=\tan ^{2} x
$$

2. $\tan x \sin x \sec x$

Solution:

$$
\begin{gathered}
\tan x \sin x \sec x=\tan x \sin x\left(\frac{1}{\cos x}\right) \\
=\frac{\sin x}{\cos x} \sin x \frac{1}{\cos x} \\
=\frac{\sin ^{2} x}{\cos ^{2} x} \\
=\tan ^{2} x
\end{gathered}
$$

3. $\frac{\tan x}{\sec x}$

Solution:

$$
\frac{\tan x}{\sec x}=\frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x}}=\frac{\sin x}{\cos x} \times \frac{\cos x}{1}=\sin x
$$

4. $1-\cos ^{2} x$

Solution:
$1-\cos ^{2} x=\cos ^{2} x+\sin ^{2} x-\cos ^{2} x=\sin ^{2} x$
5. $\sec ^{2} x-1$

Solution:

$$
\begin{gathered}
\sec ^{2} x-1=\sec ^{2} x-\left(\sec ^{2}-\tan ^{2} x\right) \\
=\sec ^{2} x-\sec ^{2} x+\tan ^{2} x \\
=\tan ^{2} x
\end{gathered}
$$

6. $\sin ^{2} x \cdot \cot ^{2} x$

Solution:

$$
\begin{gathered}
\sin ^{2} x \cdot \cot ^{2} x=\sin ^{2} x \cdot \frac{\cos ^{2} x}{\sin ^{2} x} \\
=\cos ^{2} x
\end{gathered}
$$

in problem 7-24 verify the identities.
7. $(1-\sin \theta)(1+\sin \theta)=\theta$

Solution:

$$
\begin{aligned}
\text { L. } \boldsymbol{H} . \boldsymbol{S}= & (\mathbf{1}-\boldsymbol{\operatorname { s i n } \theta} \boldsymbol{\theta})(\mathbf{1}+\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}) \\
& =1-\sin ^{2} \theta \\
& =\cos ^{2} \theta \\
& =\text { R.H.S }
\end{aligned}
$$

8. $\frac{\sin \theta+\cos \theta}{\cos \theta}=1+\tan \theta$

Solution:

$$
\begin{gathered}
\text { L.H.S }=\frac{\sin \theta+\cos \theta}{\cos \theta} \\
=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\cos \theta} \\
=\tan \theta+1
\end{gathered}
$$

$$
=\text { R.H.S }
$$

9. $(\tan \theta+\cot \theta) \tan \theta=\sec ^{2} \theta$

Solution:

$$
\begin{aligned}
& \text { L. H. } S=(\tan \theta+\cot \theta) \tan \theta \\
& \qquad \begin{array}{c}
=\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right) \frac{\sin \theta}{\cos \theta} \\
=\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}\right) \frac{\sin \theta}{\cos \theta} \\
=\left(\frac{1}{\sin \theta \cos \theta}\right) \frac{\sin \theta}{\cos \theta} \\
=\frac{1}{\cos ^{2} \theta} \\
=\sec ^{2} \theta
\end{array}
\end{aligned}
$$

10. $(\cot \theta+\operatorname{cosec} \theta)(\tan \theta-\sin \theta)=\sec \theta-$ $\cos \theta$
Solution:

$$
\text { L.H. } S=(\cot \theta+\operatorname{cosec} \theta)(\tan \theta-\sin \theta)
$$

$$
\begin{gathered}
=\left(\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}\right)\left(\frac{\sin \theta}{\cos \theta}-\sin \theta\right) \\
=\left(\frac{\cos \theta+1}{\sin \theta}\right)\left(\frac{\sin \theta-\sin \theta \cos \theta}{\cos \theta}\right) \\
=\left(\frac{1+\cos \theta}{\sin \theta}\right)\left(\frac{\sin \theta(1-\cos \theta)}{\cos \theta}\right) \\
=(1+\cos \theta) \frac{(1-\cos \theta)}{\cos \theta} \\
=\frac{1-\cos ^{2} \theta}{\cos ^{2}} \\
=\frac{1}{\cos \theta}-\frac{\cos ^{2} \theta}{\cos \theta} \\
=\sec \theta-\cos \theta \\
=\text { R.H.S }
\end{gathered}
$$

11. $\frac{\sin \theta+\cos \theta}{\tan ^{2} \theta-1}=\frac{\cos ^{2} \theta}{\sin \theta-\cos \theta}$

Solution:

$$
\begin{gathered}
\text { L.H.S }=\frac{\sin \theta+\cos \theta}{\tan ^{2} \theta-1} \\
=\frac{\sin \theta+\cos \theta}{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-1} \\
=\frac{\sin \theta+\cos \theta}{\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\cos ^{2} \theta}} \\
=\frac{\sin \theta+\cos \theta^{\sin ^{2} \theta-\cos ^{2} \theta} \times \cos ^{2} \theta}{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)} \times \cos ^{2} \theta \\
=\frac{1}{\sin \theta-\cos \theta} \times \cos ^{2} \theta \\
=\frac{\cos 2}{\sin \theta-\cos \theta} \\
=R \cdot H \cdot S
\end{gathered}
$$

12. $\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta=\operatorname{cosec} \theta$

Solution:

$$
\text { L.H.S }=\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta
$$

$$
\begin{aligned}
& =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta} \\
& =\frac{1}{\sin \theta}=\operatorname{cosec} \theta
\end{aligned}
$$

13. $\sec \theta-\cos \theta=\tan \theta \sin \theta$

Solution:

$$
\begin{aligned}
& \text { L.H. } S=\sec \theta-\cos \theta \\
& \qquad \begin{array}{c}
=\frac{1}{\cos \theta}-\cos \theta \\
= \\
=\frac{1-\cos ^{2} \theta}{\cos \theta} \\
=\frac{\sin ^{2} \theta}{\cos \theta} \\
= \\
\frac{\sin \theta}{\cos \theta} \times \sin \theta \\
=\tan \theta \sin \theta
\end{array}
\end{aligned}
$$

14. $\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta=\sec \theta$

Solution:

$$
\begin{aligned}
& \text { L.H.S }=\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta \\
& \qquad \begin{array}{r}
=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta} \\
=\frac{1}{\cos \theta} \\
=\sec \theta
\end{array}
\end{aligned}
$$

15. $\tan \theta+\cot \theta=\sec \theta \operatorname{cosec} \theta$

Solution:

$$
\begin{aligned}
& \text { L.H. } S=\tan \theta+\cot \theta \\
& =\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} \\
& =\frac{1}{\sin \theta \cos \theta} \\
& =\frac{1}{\sin \theta} \times \frac{1}{\cos \theta} \\
& =\sec \theta \operatorname{cosec} \theta
\end{aligned}
$$

16. $(\tan \theta+\cot \theta)(\cos \theta+\sin \theta)=\sec \theta+$ $\operatorname{cosec} \theta$
Solution:

$$
\begin{aligned}
& \text { L. H. } S=(\tan \theta+\cot \theta)(\cos \theta+\sin \theta) \\
& \qquad \begin{array}{c}
=\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)(\cos \theta+\sin \theta) \\
=\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}\right)(\cos \theta+\sin \theta) \\
=\left(\frac{1}{\cos \theta \sin \theta}\right)(\cos \theta+\sin \theta) \\
=\frac{\cos \theta}{\cos \theta \sin \theta}+\frac{\sin \theta}{\cos \theta \sin \theta} \\
=\frac{1}{\sin \theta}+\frac{1}{\cos \theta} \\
=\operatorname{cosec} \theta+\sec \theta \\
\text { R.H.S }
\end{array}
\end{aligned}
$$

17. $\sin \theta(\tan \theta+\cot \theta)=\sec \theta$

Solution:
L.H.S $=\sin \theta(\tan \theta+\cot \theta)$

$$
\begin{aligned}
& =\sin \theta\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right) \\
& =\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}\right) \sin \theta
\end{aligned}
$$

$$
=\left(\frac{1}{\cos \theta \sin \theta}\right) \sin \theta
$$

$$
=\frac{1}{\cos \theta}
$$

$$
=\sec \theta
$$

18. $\frac{1+\cos \theta}{\sin \theta}+\frac{\sin \theta}{1+\cos \theta}=2 \operatorname{cosec} \theta$

Solution:

$$
\begin{gathered}
\text { L.H.S }=\frac{1+\cos \theta}{\sin \theta}+\frac{\sin \theta}{1+\cos \theta} \\
=\frac{(1+\cos \theta)^{2}+\sin ^{2} \theta}{\sin \theta(1+\cos \theta)} \\
=\frac{\left(1+2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta\right)}{\sin \theta(1+\cos \theta)} \\
=\frac{1+2 \cos \theta+1}{\sin \theta} \\
=\frac{2+2 \cos \theta}{\sin \theta(1+\cos \theta)} \\
=\frac{2(1+\cos \theta)}{\sin \theta(1+\cos \theta)} \\
=\frac{2}{\sin \theta} \\
=2 \operatorname{cosec} \theta \\
=R . H . S
\end{gathered}
$$

19. $\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}=2 \operatorname{cosec}^{2} \theta$

Solution:

$$
\begin{aligned}
& \text { L.H.S }=\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta} \\
& \qquad \begin{array}{c}
1+\cos \theta+1-\cos \theta \\
(1-\cos \theta)(1+\cos \theta) \\
= \\
1-\cos ^{2} \theta \\
=\frac{2}{\sin ^{2} \theta} \\
=2 \operatorname{cosec}^{2} \theta \\
=\text { R.H.S }
\end{array}
\end{aligned}
$$

20. $\frac{1+\sin \theta}{1-\sin \theta}-\frac{1-\sin \theta}{1+\sin \theta}=4 \tan \theta \sec \theta$

Solution:

$$
\begin{gathered}
\text { L.H.S }=\frac{1+\sin \theta}{1-\sin \theta}-\frac{1-\sin \theta}{1+\sin \theta} \\
=\frac{(1+\sin \theta)^{2}-(1-\sin \theta)^{2}}{(1-\sin \theta)(1+\sin \theta)} \\
=\frac{1+2 \sin \theta+\sin ^{2} \theta-1+2 \sin \theta-\sin ^{2} \theta}{1-\sin ^{2} \theta} \\
=\frac{4 \sin \theta}{\cos ^{2} \theta} \\
=\frac{4 \sin \theta}{\cos \theta} \times \frac{1}{\cos \theta} \\
=4 \tan \theta \sec \theta
\end{gathered}
$$

21. $\sin ^{3} \theta=\sin \theta-\sin \theta \cos ^{2} \theta$

Solution:

$$
\begin{aligned}
& \text { R.H.S }=\sin \theta-\sin \theta \cos ^{2} \theta \\
& =\sin \theta\left(1-\cos ^{2} \theta\right) \\
& =\sin \theta\left(\sin ^{2} \theta\right) \\
& =\sin ^{3} \theta \\
& =\text { L.H.S }
\end{aligned}
$$

22. $\cos ^{4} \theta-\sin ^{4} \theta=\cos ^{2} \theta-\sin ^{2} \theta$ Solution:

$$
\begin{gathered}
\text { L.H.S }=\cos ^{4} \theta-\sin ^{4} \theta \\
=\left(\cos ^{2} \theta\right)^{2}-\left(\sin ^{2} \theta\right)^{2} \\
=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)(1) \\
=\text { R.H.S }
\end{gathered}
$$

23. $\sqrt{\frac{1+\cos \theta}{1-\sin \theta}}=\frac{\sin \theta}{1-\cos \theta}$

$$
\begin{aligned}
& \text { L.H.S }=\sqrt{\frac{1+\cos \theta}{1-\sin \theta}} \\
& =\sqrt{\frac{(1+\cos \theta)(1-\cos \theta)}{(1-\cos \theta)(1-\cos \theta)}} \\
& =\sqrt{\frac{1-\cos ^{2} \theta}{(1-\cos \theta)^{2}}} \\
& =\sqrt{\frac{\sin ^{2} \theta}{(1-\cos \theta)^{2}}} \\
& =\frac{\sin \theta}{1-\cos } \\
& =\text { R.H.S }
\end{aligned}
$$

24. $\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}=\frac{\sec \theta+1}{\tan \theta}$

Solution:

$$
\begin{gathered}
=\sqrt{\frac{\sec \theta+1}{\sec \theta-1}} \\
=\sqrt{\frac{(\sec \theta+1)(\sec \theta+1)}{(\sec \theta-1)(\sec \theta+1)}} \\
=\sqrt{\frac{(\sec \theta+1)^{2}}{\sec ^{2} \theta-1}} \\
=\sqrt{\frac{(\sec \theta+1)^{2}}{\tan ^{2} \theta}} \\
\text { R.H.S }
\end{gathered}
$$

Exercise 7.5

Question No. 1 Find the angle of elevation of the sun if a 6 feet man casts a 3.5 feet shadow.

From figure we have

$$
\begin{gathered}
\tan \theta=\frac{A B}{B C} \\
\tan \theta=\frac{6}{3.5} \\
\tan \theta=1.714 \\
\theta=\tan ^{-1}(1.7143) \\
\theta=59.7437^{\circ} \\
\theta=59^{\circ} 44^{\prime} 37^{\prime \prime}
\end{gathered}
$$

Question No. 2 A true casts a 40 meter shadow when the angle of elevation of the sun is 25°. Find the height of the tree.
Solution:

From the figure
Height of tree $=m \overline{A C}=$?
Length of shadow $=m \overline{B C}=40 m$
Angle of Elevation $=\theta=25^{\circ}$
Angle of fact that

$$
\begin{aligned}
& \tan \theta=\frac{m \overline{A C}}{m \overline{B C}} \\
& \tan \theta=\frac{m \overline{A C}}{40} \\
& m \overline{A C}=40 \times \tan 25^{0} \\
& m \overline{A C}=18.652 m
\end{aligned}
$$

So, height of tree is 18.652 m
Question No.3. A feet long ladder is learning against a wall. The bottom of the wall. Find the acute angle (angle of elevation) the ladder makes with the ground.

Solution:

from the figure
Length of ladder $=m \overline{A B}=20$ feet
Distance of ladder from the wall $=m \overline{B C}=5$ feet
Angle of elevation $=\theta=$?
Using the fact that

$$
\begin{gathered}
\cos \theta=\frac{m \overline{B C}}{m \overline{A B}} \\
\cos \theta=\frac{5 f t}{20 f t} \\
\cos \theta=0.25 \\
\theta=\cos ^{-1} 0.25 \\
\theta=75.5225 \\
\theta=75.5^{\circ} \\
\text { or } \quad \theta=75^{\circ} 30^{\prime}
\end{gathered}
$$

So, angle of elevation is $75^{\circ} 30^{\prime}$

Question No. 4 The base of rectangular is 25 feet and the height of rectangular is 13 feet. Find the angle that diagram of the rectangular makes with the base. Solution:

From the figure
Base of rectangular $=m \overline{B C}=25$ feet
Height of rectangular $=m \overline{B C}=13$ feet
Diagonal $\overline{A C}$ is taken
Angle between diagonal and base $=\theta$
Using the fact that

$$
\begin{gathered}
\tan \theta=\frac{m \overline{B C}}{m \overline{A B}} \\
\tan \theta=\frac{13}{25} \\
\theta=\tan ^{-1} \frac{13}{25} \\
\theta=27.4744 \\
\theta=27.47^{\circ}
\end{gathered}
$$

So, angle between diagonal and base is 27.47°
Question No. 5 A rocket is launched and climbs at a constant angle of $\mathbf{8 0}{ }^{\circ}$. Find the altitude of the rocket after it travels 5000 meter.
Solution:

From the figure
Distance travelled by rocket $=m \overline{A B}=5000 \mathrm{~m}$
Altitude of rocket $=m \overline{A C}=$?
Angle of elevation $=\theta=80^{\circ}$
Using

$$
\begin{gathered}
\sin \theta=\frac{m \overline{A C}}{m \overline{A B}} \\
\sin 80^{\circ}=\frac{m \overline{A C}}{5000} \\
m \overline{A C}=5000 \times \sin 80^{\circ} \\
m \overline{A C}=4924.04 m
\end{gathered}
$$

Question No. 6 An aero plane pilot flying at an altitude of 4000 m wishes to make an approaches to an airport at an angle of 50° with the plane be when the pilot begins to descend?
Solution:

From the figure
Altitude of aero plane $=m \overline{A C}=4000 m$
Distance of plane from airport $=m \overline{B C}=$?
Angle of depression $=50^{\circ}$
As the altimeter angles of parallel lines are equal, so angle

$$
\theta=50^{\circ}
$$

Using the fact that

$$
\begin{aligned}
\tan \theta & =\frac{m \overline{A C}}{m \overline{B C}} \\
\tan 50^{\circ} & =\frac{4000 m}{m B C} \\
m \overline{B C} & =\frac{4000 m}{\tan 50^{\circ}}
\end{aligned}
$$

$m \bar{B} \bar{C}=33356.4 \mathrm{~m}$
So, the distance of aero plane from airport is 3356.4 m Question No. 7 A guy wire (supporting wire) runs from the middle of a utility pole to ground. The wire makes an angle of 78.2^{0} with the ground and touch the ground 3 meters from the base of the pole. Find the height of the pole.
Solution:

From the figure
Height of pole $=m \overline{C D}=$?
Distance of wire from the base of the pole

$$
=m \overline{B C}=3 m
$$

Angle of elevation $=\theta=78.2^{0}$
As the wire is attached with the pole at its middle point A so first we find $m \overline{A C}$
Using the fact that

$$
\begin{gathered}
\tan \theta=\frac{m \overline{A C}}{m \overline{B C}} \\
\tan 78.2=\frac{m \overline{A C}}{3} \\
m \overline{A C}=3 m \times \tan 78.2^{0} \\
m \overline{A C}=14.36 m
\end{gathered}
$$

So, Height of pole is $=m \overline{D C}=2(m \overline{A C})$

$$
\begin{gathered}
=2 \times 14.36 \mathrm{~m} \\
=28.72 \mathrm{~m}
\end{gathered}
$$

Question No. 8 A road is inclined at an angle 5. 7^{0} suppose that we drive $\mathbf{2}$ miles up this road starting from sea level. How high above sea level are we? Solution:

From the figure
Distance covered on road $=m \overline{A B}=2$ miles
Angle of inclination $=\boldsymbol{\theta}=\mathbf{5} \mathbf{7}^{0}$
Height from sea level $=m \overline{A C}=$?
Using the fact that,

$$
\begin{gathered}
\sin \theta=\frac{m \overline{A C}}{m \overline{A B}} \\
\sin 5.7^{0}=\frac{m \overline{A C}}{\mathbf{2}} \\
m \overline{A C}=2 \times \sin 5.7^{0} \\
m \overline{A C}=0.199 \text { mile }
\end{gathered}
$$

Hence, we are at height of 0.199 mile from the sea level.

Question No. 9 A television antenna of 8 feet height is point on the top of a house. From a point on the ground the angle of elevations to the top of the house is $\mathbf{1 7}^{\mathbf{0}}$
And the angle of elevation to the top of antenna is 21. 8^{0}. find the height of the house.

Solution:

From the figure

Distance of point from house $m \overline{B C}=x$
Height of house $=m \overline{A C}=h=$?
Height of antenna $=m \overline{A D}=8$ feet
Angle of elevation of top of house $=17^{0}$
Angle of elevation of top of antenna $=21.8^{0}$ In right angled $\triangle A B C$

$$
\begin{gathered}
\tan 17^{0}=\frac{m \overline{A C}}{m \overline{B C}} \\
\tan 17^{0}=\frac{h}{x} \\
x=\frac{1}{\tan 17^{0}} \times h
\end{gathered}
$$

$x=3.271 \times h \rightarrow(i)$
Now in right angle $\triangle D B C$

$$
\begin{gathered}
\tan 21.8=\frac{m \overline{C D}}{m \overline{B C}} \\
\tan 21.8=\frac{m \overline{A D}+m \overline{A C}}{m \overline{B C}} \\
\tan 21.8=\frac{8+h}{x} \\
0.40=\frac{8+h}{3.271 h} \quad \text { from }(i) \\
0.40 \times 3.271 h=8+h \\
1.3084 h-h=8 \\
(1.3084-1) h=8 \\
0.3084 h=8 \\
h=\frac{8}{0.3084} \\
h=\frac{8}{0.3084}=25.94 \text { feet }
\end{gathered}
$$

question No. 10 from an observation point, the angles of depression of two boats in line with this point are found to 30^{0} and 45° find the distance between the two bosts if the point of observation is 4000 feet high.
Solution:

From the figure
Height of observation point $=m \overline{A D}=4000$ feet
Distance between boats $=m \overline{B C}=$?
Angle of depression of points B and C are 30° and 45^{0} respectively from point A.
As the alternate angles of parallel lines are equal, so $m \angle B=30^{\circ}$ and $m \angle C=45^{\circ}$

Now in right angled $\triangle A C D$

$$
\begin{gathered}
\tan 45^{\circ}=\frac{m \overline{A D}}{m \overline{C D}} \\
1=\frac{4000}{m \overline{C D}} \\
m \overline{C D}=4000 \text { feet }
\end{gathered}
$$

Now in right angled $\triangle A C D$

$$
\begin{gathered}
\tan 30^{\circ}=\frac{m \overline{A D}}{m \overline{B D}} \\
\frac{1}{\sqrt{3}}=\frac{4000}{m \overline{B C}+m \overline{C D}} \\
\frac{1}{\sqrt{3}}=\frac{4000}{m \overline{B C}+4000} \\
m \overline{B C}+4000=4000 \sqrt{3} \\
m \overline{B C}=4000 \sqrt{3}-4000 \\
m \overline{B C}=6928.20-4000 \\
m \overline{B C}=2928.20 \text { feet }
\end{gathered}
$$

So, the distance between boats is 2928.2 feet.
Question No. 11 Two ships, which are in lines with the base of a vertical cliff are $\mathbf{1 2 0}$ meters apart. The angles of depression from the top of the cliff to the ship are 30^{0} and 45° as shown in the diagram.
(a) Calculate the distance $B C$
(b) Calculate the height $C D$ of the cliff.

Solution:

Distance $=\overline{B C}=x=$?
Distance between boats $=\overline{A B}=120 \mathrm{~m}$
Angles of depression from point D to point A and B are 30^{0} and 45^{0} respectively.
As the altitude angles of parallel lines are equal, so $m \angle A=$ 30° and $m \angle B=45^{\circ}$
In right angled $\triangle B C D$

$$
\begin{gathered}
\tan 45^{\circ}=\frac{m \overline{C D}}{m \overline{B C}} \\
l=\frac{h}{x} \\
x=h \rightarrow(i)
\end{gathered}
$$

Now in right angled $\triangle A C D$

$$
\begin{gathered}
\tan 30^{\circ}=\frac{m \overline{C D}}{m \overline{A C}} \\
\frac{1}{\sqrt{3}}=\frac{h}{m \overline{B C}+m \overline{B C}} \\
\frac{1}{\sqrt{3}}=\frac{h}{120+x} \\
120+x=\sqrt{3} h \\
120+h=\sqrt{3} h
\end{gathered}
$$

$$
\begin{gathered}
120=\sqrt{3} h-h \\
120=h(\sqrt{3}-1) \\
120=h(1.7321-1) \\
120=(0.7321 h) \\
\frac{120}{0.7321}=h \\
h=163.91 m
\end{gathered}
$$

As $x=h$, so

$$
x=163.91 m \text { or } 164 m
$$

Height of cliff $=m \overline{C D}=164 m$
Question No. 12 Suppose that we are standing on a bridge 30 meter above a river watching a log (piece of wood) floating towards us. If the angle with the horizontal to the front of the log is 16.7^{0} and angle with the horizontal to the back of the log is 14^{0}, how long is the log?
Solution:

Height of the observer position $=m \overline{O C}=30 \mathrm{~m}$ Length of \log wood $=m \overline{A B}=x=$?
Angles of depression from point O of the points A and B are 14^{0} and $=16.7^{0}$ respectively
In right angled $\triangle O B C$

$$
\begin{gathered}
\tan 16.7^{\circ}=\frac{m \overline{O C}}{m \overline{B C}} \\
0.30=\frac{30}{m \overline{B C}} \\
m \overline{B C}=\frac{30}{0.30} \\
m \overline{B C}=100 m
\end{gathered}
$$

Now in right angled $\triangle O A C$

$$
\begin{gathered}
\tan 14^{0}=\frac{m \overline{O C}}{m \overline{A C}} \\
0.249=\frac{30}{m \overline{A B}+m \overline{B C}} \\
0.249=\frac{30}{(x+100)} \\
0.249(x+100)=30 \\
x+100=\frac{30}{0.249} \\
x+100=120.482 \\
x=120.482-100 \\
x=20.482 m
\end{gathered}
$$

So the length of \log is 20.48222 m .

