Exercise 6.1

The following data shows the number of members in various families. Construct frequency distribution. Also find cumulative frequencies.

$$
9,11,4,5,6,8,3,4,9,12,8,9,10,6,7,7,11,4,4,8,4,3,2,7,9,10,9,7,6,9,5,7
$$

Solution:
Frequency distribution of numbers of family members.

Numbers of members	Talley marks	Frequency	Commutative
2	I	1	1
3	III	3	$1+3=4$
4	N\|	6	$4+6=10$
5	IIII	4	$10+4=14$
6	III	3	$14+3=17$
7	NNI	6	$17+6=23$
8	NN	5	$23+5=28$
9	N I	6	$28+6=34$
10	II	2	$34+2=36$
11	II	2	$36+2=38$
12	I	- 1	$38+1=39$
Total		39	

Question No. 2 the following data has been obtained after weighing 40 students of class V. Make a frequency distribution taking class interval size as 5 . Also find the class boundaries and midpoints.
$34,26,33,32,24,21,37,40,41,28,31,33,34,37,23,27,31,31,36,29,35,36,37,38,22,27,28,29,31,35,35,40,21,32$, 33,27,29,30,23.
Also make a less than cumulative frequency distribution.(Hint: Make classes 20--24,25-29).
Solution:

	Frequency Distribution							
Class limits	Talley marks	Frequency						
$20-24$	NN	6						
$25-29$	NN	10						
$30-34$	NNN \|	12						
$35-39$	NN \|				9			
$40-44$	\|			3				
Total					40			

Cumulative frequency Distribution

Class Boundaries	Frequency f	Cumulative frequency	Class Boundaries	Cumulative frequency
$14.5-19.5$	0	0	Less than 19.5	0
$19.5-24.5$	6	$0+6=6$	Less than 24.5	6
$24.5-29.5$	10	$6+10=16$	Less than 29.5	16
$29.5-34.5$	13	$16+13=29$	Less than 34.5	29
$34.5-39.5$	8	$29+8=37$	Less than 39.5	37
$40-44$	3	$37+3=40$	Less than 44.5	40

Question No. 3 from the following data representing the salaries of 30 teachers of a school. Make a frequency distribution taking class interval size of Rs. 100, 450,500,550,580,1020,1130,1220,760,690,710,750,1120,760,1240.(Hint: Make classes 450-349,550649, ...).
Solution:
Frequency Distributive Table

Class Limits	Talley marks	Frequency
$450-549$	II	2
$550-649$	II	2
$650-749$	IIII	4
$750-849$	NN	5
$850-949$	III	3
$950-1049$	IIII	4
$1050-1149$	NN	5
$1150-1249$	NN	5
	Total $=$	30

(a)Find the most frequent load shedding hours.

6-7
(b) Find the least load shedding intervals.

4-5
Question No.. 5 Construct a Histogram and frequency Polygon for the following data showing weights of a studying in kg .

Weights	Frequency / No of students
$20-24$	5
$25-29$	8
$30-34$	13
$35-39$	22
$40-44$	15
$45-49$	10
$50-54$	8

Solution:

Class Boundaries	Frequency / No of students
$19.5-24.5$	5
$24.5-29.5$	8
$29.5-34.5$	13
$34.5-39.5$	22
$39.5-44.5$	15
$44.5-49.5$	10
$49.5-54.5$	8

Class Boundaries (Weights)

Class Limits	Mid points	Frequency
$20-24$	22	5
$25-29$	27	8
$30-34$	32	13
$35-39$	37	22
$40-44$	42	15
$45-49$	47	10
$50-54$	52	8

Exercise 6.2

1. What do you understand by measures of central tendency?

Solution:
The specific value of the variable around which the majority of the on observations tend to concentrate is called the central tendency.
2. Define Arithmetic mean, geometric mean, Harmonic mean, mode and Median?

Solution:

i. Arithmetic Means:

Mean is a measure that determine a value of the variable understudy by dividing the Sum of all valves of the variable by their number of observations.

$$
\bar{X}=\frac{\sum X}{n}(\text { for ungrouped data }) \text { and } \bar{X}=\frac{\sum f X}{\sum f}(\text { for grouped data })
$$

ii. Geometric Means

Geometric mean of a variable x is the nth positive root of the product of the
$x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ observation. G.M $=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)^{\frac{1}{n}}$
iii. Harmonic Means:

Harmonic mean refers to the value obtained by reciprocating the mean of the reciprocal of
$x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ observations.

$$
H . M=\frac{n}{\sum \frac{1}{x}}(\text { for ungrouped data }) \text { and } H . M=\frac{n}{\sum \frac{f}{x}}(\text { for grouped data })
$$

iv. Mode:

The most repeated value in an observation is called mode.
v. Median

Median is the middle most observation in an arranged data set. It divides the data set into equal parts.
3. Find arithmetic mean by direct method for the following set of data:
i. $12,14,17,20,24,29,35,45$
ii. 200,225,350,375,270,320,290

Solution:
i. $\quad A . M=\bar{X}=\frac{\sum X}{n}=\frac{12+14+17+20+24+29+35+45}{8}$
$=\frac{196}{8}=24.5$
ii. $\quad A . M=\bar{X}=\frac{\sum X}{n}=\frac{200+225+350+375+270+320+290}{7}$
$=\frac{2030}{7}=290$
4. For each of the data in Q.No. 3 Compute arithmetic mean using indirect method.

Solution:
i. Take any constant say 24 and take deviations from it (24)
$A=24$

X	$D=X-A$
12	$12-24=-12$
14	$17-24=-7$
17	$20-24=-4$
24	$24-24=0$
29	$29-24=5$
35	$35-24=11$
45	$45-24=21$
$n=8$	$\sum D=4$

$$
\begin{aligned}
& \bar{X}=A+\frac{\sum D}{n} \\
& =24+\frac{4}{8}=24+\frac{1}{2}=24 \times \frac{1}{2}=24.5
\end{aligned}
$$

ii. Take any constant say 270 and take deviations from it (270)

$$
A=270
$$

X	$D=X-A$
200	$200-270=-70$
225	$225-270=-45$
350	$350-270=-80$
375	$375-270=150$
270	$270-270=0$
320	$320-270=50$
290	$290-270=20$
$n=7$	$D=140$

$\bar{X}=A+\frac{\sum D}{n}$
$=270+\frac{140}{7}=270+20=290$
5. The marks obtained by students of class XI in mathematics are given below.

Compare arithmetic mean by direct and indirect methods.

$0-90$	2
$10-19$	10
$20-29$	5
$30-39$	9
$40-49$	6
$50-59$	7
$60-69$	1

Solution:
Direct method:

Classes/Groups	Mid points	f	$f x$
$0-90$	4.5	2	$4.5 \times 2=9.0$
$10-19$	14.5	10	$14.5 \times 10=145.0$
$20-29$	24.5	5	$24.5 \times 5=122.5$
$30-39$	34.5	9	$34.5 \times 9=310.5$
$40-49$	44.5	6	$44.5 \times 6=267.0$
$50-59$	54.5	7	$54.5 \times 7=381.5$
$60-69$	64.5	1	$64.5 \times 1=64.5$
		$n=\sum f=40$	1300

$$
\bar{X}=\frac{\sum f x}{\sum f}=\frac{1300}{40}=32.5
$$

Indirect, short cut method
let $A=34.5$

Classes/ Groups	Mid points	f	$D=X-a$	$U=\frac{D}{10}$	$f D$	$f(U)$ $=-\frac{f(d)}{}$
$0-90$	4.5	2	$4.5-34.5=-30$	-3	-60	-6
$10-19$	14.5	10	$14.5 \times 34.5=-20$	-2	-200	-20
$20-29$	24.5	5	$24.5 \times 34.5=-10$	-1	-50	-5
$30-39$	34.5	9	$34.5 \times 34.5=0$	0	0	0
$40-49$	44.5	6	$44.5 \times 34.5=10$	1	60	6
$50-59$	54.5	7	$54.5 \times 34.5=20$	2	140	14
$60-69$	64.5	1	$64.5 \times 34.5=30$	3	30	3
Total		$n=\sum f=40$	1300		-80	-8

$$
\begin{array}{rlr}
\bar{X}=h+\frac{\sum f D}{\sum f} & \text { or } & \bar{X}=h+\frac{\sum f(U)}{\sum f} \times h \\
34.5+\frac{-80}{40} & & =34.5+\frac{-8}{40} \times h \\
=34.5-2 & & =34.5+\frac{-8}{40} \times 10 \\
=32.55 & & 34.5-2=32.55
\end{array}
$$

6. The following data relates to to ages of children in a school. Compute the mean age by direct and short - cut method taking ant provisonal mean.

Class limits		Frequency
$4-6$		10
$7-9$		20
$10-12$		13
$13-15$	7	
Total	50	

Also Compute Geometric mean and Harmonic mean.
Solution:

Class limits	Midpoints	Frequency	$f x$
$4-6$	5	10	$5 \times 10=50$
$7-9$	8	20	$8 \times 20=160$
$10-12$	11	13	$11 \times 13=143$
$13-15$	14	7	$14 \times 7=98$
Total	$n=\sum f=50$	50	$\sum f x=451$

$$
A . M=\frac{\sum f D}{\sum f}=\frac{451}{50}=9.02
$$

Indirect, short cut method

$$
\text { Let } A=11
$$

Classes/ Groups	f	Midpoint	$D=X-a$	$U=\frac{D}{10}$	$f D$	$f(U)=$
$4-6$	5	5	$5-11=-6$	-2	-60	-2
$7-9$	8	8	$8-11=-3$	-1	-60	0
$10-12$	11	11	$11-11=-3$	0	0	7
$13-15$	14	14	$14-11=-3$	1	21	-3
Total	$\sum f$				-99	-8

$$
\begin{aligned}
& \begin{array}{c}
\bar{X}=A+\frac{\sum f D}{\sum_{9} f} \\
11-\frac{99}{50}
\end{array} \\
& =11-1.98 \\
& =9.02 \\
& \text { or } \quad \bar{X}=A+\frac{\sum f(U)}{\sum f} \times h \\
& =11+\frac{-33}{50} \times 3 \\
& =11-\frac{99}{50} \\
& 11-1.98=9.02
\end{aligned}
$$

Geometric Mean

We proceed as follows:

Class limits	f	Midpoints	$\log x$	$f \log x$
4-6	10	5	0.6987	6.9897
7-9	20	8	0.90309	18.0618
10-12	13	11	1.04139	13.53807
13-15	7	14	1.14613	8.02291
	$\sum f=50$		$\sum f \log x$	$=46.61248$
$G . M=$ Antilog $\left(\frac{\sum f l o g x}{\sum f}\right)$				
$G . M=\operatorname{Antilog}\left(\frac{46.61248}{50}\right)$				

$$
\operatorname{Antilog}(0.9322496)=8.553
$$

Harmonic means:

Class limits	f	Midpoints	$\frac{f}{x}$
$4-6$	10	5	$\frac{10}{5}=2.0$
$7-9$	20	8	$\frac{20}{8}=2.5$
$10-12$	13	11	$\frac{13}{11}=1.18$
$13-15$	7	14	$\frac{7}{14}=0.50$
	$\sum f=50$		$\sum / x=6.18$

$$
H . M=\left(\frac{\sum f}{\sum \frac{f}{x}}=\frac{50}{6.18}=8.09\right)
$$

7. The following data shows the number of children in which in various familiar. Find mode and median. $9,11,4,5,6,8,4,3,7,8,5,5,8,3,4,9,12,8,9,10,6,1,7,11,4,4,8,4,3,2,7,9,10,9,7,6,9,5$
Solution:
Writing the observation in Ascending order

$$
2,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,12
$$

Mode: the most frequent observation $=9,4$
Number of observation $=38$
Therefore, median is the mean of $19^{\text {th }}$ and $20^{\text {th }}$ observation $=\frac{7+7}{2}=7$
8. Find Model number of heads for the following distributive showing of heads when 5 coins are tossed. Also determine median.

$X($ number of heads $)$	Frequency (number of times)
1	3
2	8
3	5
4	3
5	1

Solution:

Mode:
The most frequent observation $=2$
For median, we make cumulative frequency column.

x	frequency	Cumulative frequency
1	3	3
2	8	$3+8=11$
3	5	$11+5=16$
4	3	$16+3=19$
5	1	$19+1=20$

Median $=$ the class containing $\left(\frac{n}{2}\right)^{\text {th }}$ observation
$=$ the class containing $\left(\frac{20}{2}\right)^{\text {th }}$ observation.
$=$ the class containing $\left(10^{\text {th }}\right)$ observtaion.
Median $=2$
9. The following frequency distribution the weight of boys in kilogram. Compute mean, median, mode.

Class intervals	frequency
$1-3$	2
$4-6$	3
$7-9$	
$10-12$	5
$13-15$	4
$16-18$	6
$19-21$	2

Solution:

Class intervals	frequency	Mid points (x)	$f x$	Class Boundaries	Cumulative Frequency
$1-3$	2	2	4		2
$4-6$	3	5	15		$2+3$
$7-9$	5	8	40		$5+5=10$
$10-12$	4	11	44		$10+4=14$
$13-15$	6	14	84		$14+6=20$
$16-18$	2	17	34		$20+2=22$
$19-21$	1	20	20		$22+1=23$
	23		241		

$$
\text { Mean }=\bar{X}=\frac{\sum f x}{\sum f}=\frac{241}{23}=10.478
$$

Median:
Median class $=$ class containg $\left(\frac{n}{2}\right)^{\text {th }}$ obseravtion.
$=\left(\frac{23}{2}\right)^{t h}=(11.5)^{t h}$ observation
Median class is $9.5-12.5$
Here $l=9.5, c=10, f=4, h=3$
Median $=l+\frac{h}{f}\left(\frac{n}{c}-c\right)$

$$
=9.5+\frac{3}{4}\left(\frac{23}{2}-10\right)=9.5+\frac{3}{4}\left(\frac{3}{2}\right)=9.5+\frac{9}{8}=9.5+1.125=10.625
$$

Mode: Mode $=l+\frac{f_{m}-f_{1}}{2 f_{m}-f_{1}-f_{2}} \times h$
Herel $=12.5, f_{m}=6, f_{1}=4, f_{2}, h=3$

$$
\because M o d e=12.5+\frac{6-4}{2(6)-4-2} \times 3=12.5+\frac{2}{6} \times 3=12.5+1=13.5
$$

10. A student obtained the following marks at a certain examination: English 73, Urdu 82, Mathematics 80, History 67 and Science 62.
i. If the Wight accorded these marks are 4,3,3,4 and 2. repectively. what is an appropriate average marks?
ii. What is the average mark if equal weights are used?

Solution:

Marks(x)	Weight(w)	$x w$
73	4	$73 \times 4=292$
82	3	$82 \times 3=246$
80	3	$80 \times 3=240$
67	2	$67 \times 2=134$
62	2	$62 \times 2=124$
$\sum x=364$	$\sum w=14$	$\sum x w=1036$
$\sum \sum$		

(i)

$$
\bar{X}_{n}=\frac{\sum X w}{\sum w}=\frac{1036}{14}=74
$$

(ii)

$$
\bar{X}=\frac{\sum x}{n}=\frac{364}{5}=72.8
$$

11. On a vacation trip a family bought 21.3 liters of petrol at 39.90 rupees per liter, 18.7 liters at 42.90 rupees per liter, and 23.5 liters at 40.90 rupees per liter find the mean price paid per liter.
Solution:

X	W	$X W$
21.3	39.90	$(21.3)(39.90)=849.87$
18.7	42.90	$(21.3)(39.90)=849.87$
23.5	40.90	$(21.3)(39.90)=849.87$
$\sum_{\sum X W} x=63.5$		$\sum x=2613.25$

Mean price $=\frac{\sum X W}{\sum X}=\frac{2613.25}{63.5}=41.15$ rupees per liter
12. Calculator simple moving average of 3 years from the following data;

Years	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Valves	102	108	130	140	1158	180	196	210	220	230

Solution:

Years	Values	3-years moving total	3- years moving average
$\mathbf{2 0 0 1}$	102	-	-
2002	108	$\mathbf{3 4 0}$	$\mathbf{3 4 0 / 3}=\mathbf{1 1 3 . 3 3}$

Class 10 ${ }^{\text {th }}$

2003	130	378	$378 / 3=126.00$
2004	140	428	$428 / 3=142.67$
2005	158	478	$\frac{478}{3}=159.33$
2006	180	534	$534 / 3=178.00$
2007	196	586	$586 / 3=195.33$
2008	210	626	$626 / 3=208.67$
2009	220	660	$660 / 3=220.00$
2010	230	-	

13. Determine graphically for the following data and check your answer by using formulae.
i. Median and Quartiles using cumulative frequency polygon.
ii. Mode using Histogram

Class Boundaries	Frequency
$10-20$	2
$20-30$	5
$30-40$	9
$40-50$	6
$50-60$	4
$60-70$	1

Solution:

Class Boundaries	Frequency	c. \boldsymbol{f}
$10-20$	2	2
$20-30$	5	7
$30-40$	9	16
$40-50$	6	22
$50-60$	4	26
$60-70$	1	27

Median Class Q_{3} Clas

Median Class $=\left(\frac{n}{2}\right)^{\text {th }}$ observation $=\left(\frac{27}{2}\right)^{\text {th }}=(13.5)^{\text {th }}$ observation.
Median $=\boldsymbol{l}+\frac{\boldsymbol{h}}{\boldsymbol{f}}\left(\frac{\boldsymbol{n}}{\mathbf{2}}-\boldsymbol{c}\right)$
Herel $=$ 30, $h=10, f=9, n=2.7 . c=7$
Thus median $x=30+\frac{10}{9}\left(\frac{27}{2}-7\right)=30+\frac{10}{9}\left(\frac{13}{2}\right)=30+7.22=37.22$

Exercise 6.3

1. What do you understand by Dispersion?

Dispersion means the spread or scatter ness of observations in a data set. By dispersion means the extent to which observations in a sample or n a population are spread out. The main measure of dispersion are range, variance and standard deviation's.
2. How do you define measure of dispersion?

The measure that are used to determine the degree or extent of variation in a data set are called measure of dispersion.
3. Define Range, Standard deviation and Variance.

Solution:
ii. Range:

Range measure the extent of variation between two extreme observations of a data set.
It is given by the formula:
$X_{m a x}-X_{m i n}=X_{m}-X_{o}$
Where $X_{\max }=X_{m}=$ the maximum, highest or largest observation.

$$
X_{\min }=X_{o}=\text { the minimum lowest or smallest observation. }
$$

The formula to find range for grouped continuous data us given below.
Range $=($ Upper class boundary of last group $)-($ Lower class boundary of first group $)$.
iii. Variance:

Variance is defined as the mean of the squared deviation of $x_{i}(i=1,2,3, \ldots, n)$ observation from their arithmetic mean. In symbols,

$$
\operatorname{Variance} \text { of } X=\operatorname{Var}(X)=\boldsymbol{S}^{2}=\frac{\sum(X-\bar{X})^{2}}{n}
$$

iv. Standard Deviation

Standard deviation is defined as the positive square root of mean of the squared deviations of $X_{i}(i=1,2,3, \ldots, n)$ observations from their arithmetic mean. In symbols we write

$$
\text { standard Devaition of } X=\boldsymbol{S} . \boldsymbol{D}(X)=\boldsymbol{S}=\sqrt{\frac{\sum(X-\bar{X})^{2}}{\boldsymbol{n}}}
$$

Computations of Variance and Standard Devotions
We uses the following to compute Variance and standard Deviations for Ungrouped and Grouped Data.
Ungrouped Data:
The formula of Variance is given by

$$
\operatorname{Var}(X)=\boldsymbol{S}^{2}=\frac{\sum X^{2}}{\boldsymbol{n}}-\left(\frac{\sum X}{n}\right)^{2}
$$

And standard Deviation

$$
S . D(X)=S=\sqrt{\left[\frac{\sum X^{2}}{n}-\left(\frac{\sum X}{n}\right)^{2}\right]}
$$

4. The salaries of five teachers in Rupees are as follows.
$11500,12400,15000,14500,14800$.
find Range and Standard devitions
Solution:

$$
X=11500,12400,15000,14500,14800
$$

Here $X_{\min }=11500, \quad X_{\max }=15000$
Range $=X_{\text {max }}-X_{\text {min }}$

$$
=15000-11500
$$

$$
=3500
$$

$$
\bar{X}=\frac{\sum x}{n}
$$

$$
\begin{gathered}
=\frac{11500+12400+15000+14500+14800}{5} \\
=\frac{68200}{5}=13640
\end{gathered}
$$

X	$X-\bar{X}$	$(X-\bar{X})^{2}$
11500	-2140	4579600
12400	-1240	1537600
15000	1360	1849600
14500	860	739600
14800	1160	1345600

$$
\sum(X-\bar{X})^{2}=10052000, \quad n=5
$$

$$
\boldsymbol{S} . \boldsymbol{D}(\boldsymbol{X})=\boldsymbol{S}=\sqrt{\left[\frac{\sum X^{2}}{\boldsymbol{n}}-\left(\frac{\sum X}{\boldsymbol{n}}\right)^{2}\right]}
$$

$$
\begin{aligned}
& =\sqrt{\frac{10052000}{5}} \\
& =\sqrt{2010400} \\
& =1417.88
\end{aligned}
$$

5. (a) Find the standard deviation " S " of each set of numbers:
i. $12,6,7,3,15,10,18,5$
ii. $\quad 9,3,8,8,9,8,9,18$.
(b) Calculate variance for the data $10,8,9,7,5,12,8,6,8,2$

Solution:
i.

X	$X-\bar{X}$	$(X-\bar{X})^{2}$
12	2.5	6.25
6	-3.5	12.25
7	-2.5	6.25
3	-6.5	42.25
15	5.5	30.25
10	0.5	0.25
18	8.5	72.25
5	-4.5	20.25

$$
\begin{aligned}
\bar{X} & =\frac{76}{8}=9.5 \\
\boldsymbol{S . ~} \boldsymbol{D}(\boldsymbol{X})=\boldsymbol{S} & =\sqrt{\left[\frac{\sum X^{2}}{n}-\left(\frac{\sum X}{n}\right)^{2}\right]} \\
& =\sqrt{\frac{190}{8}} \\
& =\sqrt{23.75} \\
& =4.87
\end{aligned}
$$

ii.

X	$X-\bar{X}$	$(X-\bar{X})^{2}$
9	0	0
3	-6	36
8	-1	1
8	-1	1
9	0	0
8	-1	1
9	0	0
18	9	81

$$
\begin{aligned}
\sum X=72 & \sum(X-\bar{X})^{2}=120, n=8 \\
\bar{X} & =\frac{\sum X}{n}=\frac{7 o}{8}=9 \\
\boldsymbol{S .} \boldsymbol{D}(\boldsymbol{X})= & \boldsymbol{S}=\sqrt{\left[\frac{\sum X^{2}}{n}-\left(\frac{\sum X}{n}\right)^{2}\right]} \\
& =\sqrt{\frac{120}{8}} \\
& =\sqrt{15}=3.87
\end{aligned}
$$

(b) Calculate variance for the data $10,8,9,7,5,12,8,6,8,2$

Solution:

X	$X-\bar{X}$	$(X-\bar{X})^{2}$
10	2.5	6.25
8	0.5	25
9	1.5	2.25
7	-0.5	.25
5	-2.5	6.25
12	4.5	20.25
8	0.5	.25

6. The length of 32 items are given below. Find the mean length and standard deviation of the distribution.

Length	$20-22$	$23-25$	$26-28$	$29-31$	$32-34$
frequency	3	6	12	9	2

Solution:

C.I	f	Mid points (x)	$f x$	$X-\bar{X}$	$(X-\bar{X})^{2}$	$f(X-\bar{X})^{2}$
$20-22$	3	21	63	-6	36	108
$23-25$	6	24	144	-3	9	54
$26-28$	12	27	324	0	0	0
$29-31$	9	30	270	3	9	81
$32-34$	2	33	66	6	36	72
total	32		$\sum f x=867$		90	315

$\bar{X}=\frac{\sum f x}{n}=\frac{867}{32}=27.093=27$ approx $\quad \bar{X}=\frac{\Sigma X}{n}=\frac{75}{10}=7.5$

$$
\boldsymbol{S} . \boldsymbol{D}(X)=\boldsymbol{S}=\sqrt{\left[\frac{\sum X^{2}}{n}-\left(\frac{\sum X}{n}\right)^{2}\right]}=\sqrt{\frac{315}{\mathbf{3 2}}}=\sqrt{9.84375}=3.3137
$$

7. For the following distribution of marks calculator Range

	Frequency/No.
$33-40$	28
$41-50$	31
$51-60$	
$61-70$	
$71-75$	9

Solution:

C.I	Class Boundaries	f
$33-40$	$32.5-40.5$	28
$41-50$	$40.5-50.5$	32
$51-60$	$50.5-60.5$	12
$61-70$	$60.5-70.5$	9
$71-75$	$70.5-75.5$	5

Here
$X_{\max }=75.5$
$X_{\text {min }}=32.5$
Range $=X_{\text {max }}-X_{\text {min }}$
$=75.5-32.5=43$

