Chapter 6

Exercise 6.1

The following data shows the number of members in various families. Construct frequency distribution. Also find cumulative frequencies.

9, 11, 4, 5, 6, 8, 3, 4, 9, 12, 8, 9, 10, 6, 7, 7, 11, 4, 4, 8, 4, 3, 2, 7, 9, 10, 9, 7, 6, 9, 5, 7

Solution:

Frequency distribution of numbers of family members.

· · ·	Tallou marka	Fragman	Commutative
Numbers of members	Talley marks	Frequency	Commutative
2		1	1
3	III	3	1+3=4
4	NVI	6	4+6=10
5	1111	4	10+4=14
6	III	3	14+3=17
7	THJI	6	17+6=23
8	HH ₩ 1	5	23+5=28
9		6	28+6=34
10	II	2	34+2=36
11	II	2	36+2=38
12	I	S Y	38+1=39
То	tal	39	

Question No.2 the following data has been obtained after weighing 40 students of class V. Make a frequency distribution taking class interval size as 5. Also find the class boundaries and midpoints. 34,26,33,32,24,21,37,40,41,28,31,33,34,37,23,27,31,31,36,29,35,36,37,38,22,27,28,29,31,35,35,40,21,32, 33,27,29,30,23.

Also make a less than cumulative frequency distribution.(Hint: Make classes 20--24,25—29). Solution:

		F	requency Distribution	n		
Class limits		Talley marks		Frequency		
20 - 24			IHI		6	
25 – 29					10	
30 - 34					12	
35 – 39)		MAN 1111			9
40 - 44	•		111		3	
Total				40		
Cumulative frequency Distribution						
Class Doundarios	Frequency f		Cumulative	Class	Boundaries	Cumulative
Class Boundaries			frequency	Class	Boundaries	frequency
14.5 — 19.5	0		0	Less than 19.5		0
19.5 – 24.5	6		0 + 6 = 6	Less than 24.5		6
24.5 - 29.5	10		6 + 10 = 16	Less than 29.5		16
29.5 - 34.5	13		16 + 13 = 29	Less than 34.5		29
34.5 - 39.5	8		29 + 8 = 37	Less than 39.5		37
40-44 3		37 + 3 = 40	Les	Less than 44.5 40		

Chapter 6

Question No.3 from the following data representing the salaries of 30 teachers of a school. Make a frequency distribution taking class interval size of Rs. 100,

450,500,550,580,1020,1130,1220,760,690,710,750,1120,760,1240. (Hint: Make classes $450-349,550-649,\dots$).

Solution:

Frequency Distributive Table					
Class Limits	Talley marks	Frequency			
450 - 549	II	2			
550 - 649	II	2			
650 — 749	1111	4			
750 — 849	[HJ]	5			
850 - 949	III	3			
950 - 1049	IIII	4			
1050 - 1149	LH1	5			
1150 - 1249	NN	5			
	Total =	30			

(a)Find the most frequent load shedding hours.

6 - 7

(b) Find the least load shedding intervals.

4 – 5

Question No..5 Construct a Histogram and frequency Polygon for the following data showing weights of a studying in kg.

Weights	Frequency / No of students
20 - 24	5
25 – 29	8
30 - 34	13
35 – 39	22
40 - 44	15
45 – 49	10
50 - 54	8

Solution:

Class Boundaries	Frequency / No of students
19.5 – 24.5	5
24.5 – 29.5	8
29.5 - 34.5	13
34.5 – 39.5	22
39.5 - 44.5	15
44.5 – 49.5	10
49.5 – 54.5	8

Chapter 6

Class Limits	Mid points	Frequency
20 - 24	22	5
25 – 29	27	8
30 - 34	32	13
35 – 39	37	22
40 - 44	42	15
45 – 49	47	10
50 – 54	52	8
0	(42,15) (32,13) (27,8) (22,5) 7,0) 17 22 27 32 37 22 42 47 52 53 midPoint	(57,0)

Exercise 6.2

1. What do you understand by measures of central tendency? Solution:

The specific value of the variable around which the majority of the on observations tend to concentrate is called the central tendency.

2. Define Arithmetic mean, geometric mean, Harmonic mean, mode and Median? Solution:

i. Arithmetic Means:

Mean is a measure that determine a value of the variable understudy by dividing the Sum of all values of the variable by their number of observations.

$$\bar{X} = \frac{\sum X}{n}$$
 (for ungrouped data) and $\bar{X} = \frac{\sum fX}{\sum f}$ (for grouped data)

ii. Geometric Means

Geometric mean of a variable x is the nth positive root of the product of the

 $x_1, x_2, x_3, ..., x_n$ observation. G.M = $(x_1, x_2, x_3, ..., x_n)^{\frac{1}{n}}$

iii. Harmonic Means:

Harmonic mean refers to the value obtained by reciprocating the mean of the reciprocal of $x_1, x_2, x_3, ..., x_n$ observations.

$$H.M = \frac{n}{\sum \frac{1}{x}} (for ungrouped data) and H.M = \frac{n}{\sum \frac{f}{x}} (for grouped data)$$

iv. Mode:

The most repeated value in an observation is called mode.

v. Median

Median is the middle most observation in an arranged data set. It divides the data set into equal parts.

- **3.** Find arithmetic mean by direct method for the following set of data:
 - i. 12,14,17,20,24,29,35,45
 - ii. 200,225,350,375,270,320,290

Solution:

i.
$$A.M = \bar{X} = \frac{\sum X}{n} = \frac{12+14+17+20+24+29+35+45}{8}$$
$$= \frac{196}{8} = 24.5$$
ii.
$$A.M = \bar{X} = \frac{\sum X}{n} = \frac{200+225+350+375+270+320+290}{7}$$
$$= \frac{2030}{7} = 290$$

4. For each of the data in Q.No.3 Compute arithmetic mean using indirect method.

Solution:

i. Take any constant say 24 and take deviations from it (24)

A = 24

X	D = X - A
12	12 - 24 = -12
14	17 - 24 = -7
17	20 - 24 = -4
24	24 - 24 = 0
29	29 - 24 = 5
35	35 - 24 = 11
45	45 - 24 = 21
<i>n</i> = 8	$\sum D = 4$

$$\bar{X} = A + \frac{\sum D}{n}$$

= 24 + $\frac{4}{8}$ = 24 + $\frac{1}{2}$ = 24 × $\frac{1}{2}$ = 24.5

Take any constant say 270 and take deviations from it (270) ii.

A = 270					
X	D = X - A				
200	200 - 270 = -70				
225	225 - 270 = -45				
350	350 - 270 = -80				
375	375 - 270 = 150				
270	270 - 270 = 0				
320	320 - 270 = 50				
290	290 - 270 = 20				
<i>n</i> = 7	$\sum D = 140$				
$\bar{X} = A + \frac{\Sigma D}{n}$					

$$\bar{X} = A + \frac{\sum D}{n}$$

= 270 + $\frac{140}{2}$ = 270 + 20 = 290

5. The marks obtained by students of class *XI in mathematics* are given below. Compare arithmetic mean by direct and indirect methods.

0 - 90	2
10 - 19	10
20 - 29	5
30 - 39	9
40 - 49	6
50 - 59	7
60 - 69	1

Solution:

Direct method:

Classes/ Groups	Mid points	f	fx
0 - 90	4.5	2	$4.5 \times 2 = 9.0$
10 - 19	14.5	10	$14.5 \times 10 = 145.0$
20 - 29	24.5	5	$24.5 \times 5 = 122.5$
30 - 39	34.5	9	$34.5 \times 9 = 310.5$
40 - 49	44.5	6	$44.5 \times 6 = 267.0$
50 - 59	54.5	7	$54.5 \times 7 = 381.5$
60 - 69	64.5	1	$64.5 \times 1 = 64.5$
		$n = \sum f = 40$	1300

$$\bar{X} = \frac{\sum fx}{\sum f} = \frac{1300}{40} = 32.5$$

Indirect, short cut method

let A = 34.5

Classes/ Groups	Mid points	f	D=X-a	$U = \frac{D}{10}$	fD	$f(U) = -\frac{f(d)}{dt}$
0 - 90	4.5	2	4.5 - 34.5 = -30	-3	-60	-3 -6
10 - 19	14.5	10	$14.5 \times 34.5 = -20$	-2	-200	-20
20 - 29	24.5	5	$24.5 \times 34.5 = -10$	-1	-50	-5
30 - 39	34.5	9	$34.5 \times 34.5 = 0$	0	0	0
40 - 49	44.5	6	$44.5 \times 34.5 = 10$	1	60	6
50 - 59	54.5	7	$54.5 \times 34.5 = 20$	2	140	14
60 - 69	64.5	1	$64.5 \times 34.5 = 30$	3	30	3
Total		$n = \sum f = 40$	1300		-80	-8

 $\bar{X} = h + \frac{\sum fD}{\sum f} \\ 34.5 + \frac{-80}{40} \\ = 34.5 - 2 \\ = 32.55$

or
$$\overline{X} = h + \frac{\sum f(U)}{\sum f} \times h$$

= $34.5 + \frac{-8}{40} \times h$
= $34.5 + \frac{-8}{40} \times 10$
 $34.5 - 2 = 32.55$

6. The following data relates to to ages of children in a school. Compute the mean age by direct and short – *cut method taking ant provisonal mean*.

Class limits	Frequency
4 - 6	10
7 - 9	20
10 - 12	13
13 – 15	7
Total	50

Also Compute Geometric mean and Harmonic mean. Solution:

Class limits	Midpoints	Frequency	fx
4 - 6	5	10	$5 \times 10 = 50$
7 – 9	8	20	$8 \times 20 = 160$
10 - 12	11	13	$11 \times 13 = 143$
13 – 15	14	7	$14 \times 7 = 98$
Total	$n = \sum f = 50$	50	$\sum fx = 451$
	$\sum fD$ 45	1 0.02	<u> </u>

$$A.M = \frac{\sum fD}{\sum f} = \frac{451}{50} = 9.02$$

Indirect, short cut method

Let A = 11

Classes/ Groups	f	Midpoint	D = X - a	$U = \frac{D}{10}$	fD	f(U) = -	$\frac{f(d)}{3}$
4 - 6	5	5	5 - 11 = -6	-2	-60	-2	
7 – 9	8	8	8 - 11 = -3	-1	-60	0	
10 - 12	11	11	11 - 11 = -3	0	0	7	
13 – 15	14	14	14 - 11 = -3	1	21	-3:	
Total	$\sum f$				-99	-8	

р

Chapter 6

$\bar{X} = A + \frac{\sum fD}{\sum f}$	or $\overline{X} = A + \frac{\sum f(U)}{\sum f} \times h$
$ \begin{array}{r} 11 - \frac{99}{50} \\ = 11 - 1.98 \end{array} $	$= 11 + \frac{-33}{50} \times 3$
= 9.02	$= 11 - \frac{55}{50}$ $11 - 1.98 = 9.02$

Geometric Mean

We proceed as follows:

Class limits	f	Midpoints	logx	flogx
4 - 6	10	5	0.6987	6.9897
7 – 9	20	8	0.90309	18.0618
10 - 12	13	11	1.04139	13.53807
13 – 15	7	14	1.14613	8.02291
	$\sum f = 50$		$\sum f \log x$	= 46.61248

$$G.M = Antilog\left(\frac{\sum f logx}{\sum f}\right)$$

$$G.M = Antilog\left(\frac{46.61248}{50}\right)$$

$$Antilog(0.9322496) = 8.553$$
Midpoints

$$Antilog(0.9322496) = 8.553$$

Harmonic means:

Class limits	f	Midpoints	$\frac{f}{x}$
4 - 6	10	5	$\frac{10}{5} = 2.0$
7 – 9	20	8	$\frac{20}{8} = 2.5$
10 - 12	13	11	$\frac{13}{11} = 1.18$
13 – 15	7	14	$\frac{7}{14} = 0.50$
	$\sum f = 50$		$\sum f/x = 6.18$
		$\left(\Sigma f = F 0 \right)$	

$$H.M = \left(\frac{\sum f}{\sum \frac{f}{\chi}} = \frac{50}{6.18} = 8.09\right)$$

7. The following data shows the number of children in which in various familiar. Find mode and median. 9,11,4,5,6,8,4,3,7,8,5,5,8,3,4,9,12,8,9,10,6,1,7,11,4,4,8,4,3,2,7,9,10,9,7,6,9,5

Solution:

Writing the observation in Ascending order

2,3,3,3,4,4,4,4,4,5,5,5,5,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9,9,9,9,9,10,10,11,11,12

Mode: the most frequent observation = 9,4

Number of observation = 38

Therefore, median is the mean of 19^{th} and 20^{th} observation $=\frac{7+7}{2}=7$

8. Find Model number of heads for the following distributive showing of heads when 5 coins are tossed. Also determine median.

X(n	umber of head	s)	Frequency (number of times)		
	1			3	
	2		8		
	3		5		
	4			3	
	5			1	
Solution:					
Mode:					
	luent observatio				
For median, w	ve make cumulat	ive frequency colum	ın.	-	
x		frequen	су	Cumula	tive frequency
1		3			3
2		8			3+8=11
3		5			1+5=16
4		3			+ 3 = 19
5		1 edian = the class c			9+1=20
		= the class contained at the class contained	ining $\left(\frac{20}{2}\right)$	observation.	
			edian = 2	am. Compute mea	
	Class intervals	М	edian = 2	am. Compute mea frequency	
	Class intervals $1-3$	М	edian = 2	am. Compute mea frequency 2	
	Class intervals 1-3 4-6	М	edian = 2	am. Compute mea frequency 2 3	
	Class intervals $1-3$ $4-6$ $7-9$	М	edian = 2	am. Compute mea frequency 2	
	Class intervals 1-3 4-6 7-9 10-12	М	edian = 2	am. Compute mea frequency 2 3 5 4	
	Class intervals 1-3 4-6 7-9 10-12 13-15	М	edian = 2	am. Compute mea frequency 2 3 5 4 6	
	$ \begin{array}{r} \text{Class intervals} \\ 1 - 3 \\ 4 - 6 \\ 7 - 9 \\ 10 - 12 \\ 13 - 15 \\ 16 - 18 \\ \end{array} $	М	edian = 2	am. Compute mea frequency 2 3 5 4	
	Class intervals 1-3 4-6 7-9 10-12 13-15	М	edian = 2	am. Compute mea frequency 2 3 5 4 6 2	
	$ \begin{array}{r} \text{Class intervals} \\ 1 - 3 \\ 4 - 6 \\ 7 - 9 \\ 10 - 12 \\ 13 - 15 \\ 16 - 18 \\ \end{array} $	М	edian = 2	am. Compute mea frequency 2 3 5 4 6 2	
ution:	Class intervals 1-3 4-6 7-9 10-12 13-15 16-18 19-21	M bution the weight of	edian = 2 boys in kilogra	am. Compute mea frequency 2 3 5 4 6 2 1 Class	Cumulative
ution: Class intervals	Class intervals 1-3 4-6 7-9 10-12 13-15 16-18 19-21 frequency	M bution the weight of Mid points(x)	edian = 2 boys in kilogra	am. Compute mea frequency 2 3 5 4 6 2 1 Class	Cumulative Frequency
ution: Class intervals 1-3	Class intervals 1-3 4-6 7-9 10-12 13-15 16-18 19-21 frequency 2	M bution the weight of Mid points(x) 2	edian = 2 boys in kilogra	am. Compute mea frequency 2 3 5 4 6 2 1 Class	Cumulative Frequency 2
ution: Class intervals $\frac{1-3}{4-6}$	Class intervals 1-3 4-6 7-9 10-12 13-15 16-18 19-21 frequency 2 3	Mid points(x)	edian = 2 boys in kilogra	am. Compute mea frequency 2 3 5 4 6 2 1 Class	Cumulative Frequency 2 2+3
ution: Class intervals 1-3 4-6 7-9	Class intervals 1-3 4-6 7-9 10-12 13-15 16-18 19-21 frequency 2 3 5	M bution the weight of Mid points(x) 2 5 8	edian = 2 boys in kilogra	am. Compute mea frequency 2 3 5 4 6 2 1 Class	Cumulative Frequency 2 2+3 5+5=10
ution: Class intervals 1-3 4-6 7-9 10-12	Class intervals 1-3 4-6 7-9 10-12 13-15 16-18 19-21 frequency 2 3 5 4	Mid points(x) 2 5 8 11	edian = 2 boys in kilogra	am. Compute mea frequency 2 3 5 4 6 2 1 Class	Cumulative Frequency 2 2+3 5+5=10 10+4=14
ution: Class intervals 1 - 3 4 - 6 7 - 9 10 - 12 13 - 15	Class intervals 1-3 4-6 7-9 10-12 13-15 16-18 19-21 frequency 2 3 5 4 6	Mid points(x) 2 5 8 11 14	edian = 2 boys in kilogra	am. Compute mea frequency 2 3 5 4 6 2 1 Class	Cumulative Frequency 2 2+3 5+5=10 10+4=14 14+6=20

$$Mean = \bar{X} = \frac{\sum fx}{\sum f} = \frac{241}{23} = 10.478$$

Median:

Median class = class containg $\left(\frac{n}{2}\right)^{th}$ observation.

Chapter 6

 $= \left(\frac{23}{2}\right)^{th} = (11.5)^{th} \text{observation}$ Median class is 9.5 - 12.5Here l = 9.5, c = 10, f = 4, h = 3Median $= l + \frac{h}{f} \left(\frac{n}{c} - c\right)$ $= 9.5 + \frac{3}{4} \left(\frac{23}{2} - 10\right) = 9.5 + \frac{3}{4} \left(\frac{3}{2}\right) = 9.5 + \frac{9}{8} = 9.5 + 1.125 = 10.625$ Mode: $Mode = l + \frac{f_m - f_1}{2f_m - f_1 - f_2} \times h$ Here $l = 12.5, f_m = 6, f_1 = 4, f_2, h = 3$

$$\therefore Mode = 12.5 + \frac{6-4}{2(6)-4-2} \times 3 = 12.5 + \frac{2}{6} \times 3 = 12.5 + 1 = 13.5$$

10. A student obtained the following marks at a certain examination: English 73, Urdu 82, Mathematics 80, History 67 and Science 62.

i. If the Wight accorded these marks are 4,3,3,4 *and* 2. *repectively*. *w*hat is an appropriate average marks?

ii. What is the average mark if equal weights are used? Solution:

		7				
Marks(x)	Weight(w)	xw				
73	4	$73 \times 4 = 292$				
82	3	$82 \times 3 = 246$				
80	3	$80 \times 3 = 240$				
67	2	$67 \times 2 = 134$				
62	2	$62 \times 2 = 124$				
$\sum x = 364$	$\sum w = 14$	$\sum x w = 1036$				
(i) $\bar{X}_n = \frac{\sum Xw}{\sum w} = \frac{1036}{14} = 74$ (ii) $\bar{X} = \frac{\sum x}{n} = \frac{364}{5} = 72.8$						

11. On a vacation trip a family bought 21.3 liters of petrol at 39.90 rupees per liter, 18.7 liters at 42.90 rupees per liter, and 23.5 liters at 40.90 rupees per liter find the mean price paid per liter.Solution:

X	W	XW
21.3	39.90	(21.3)(39.90) = 849.87
18.7	42.90	(21.3)(39.90) = 849.87
23.5	40.90	(21.3)(39.90) = 849.87
$\sum x = 63.5$		$\sum x W = 2613.25$

Mean price $\frac{\sum XW}{\sum X} = \frac{2613.25}{63.5} = 41.15$ rupees per liter

12. Calculator simple moving average of 3 years from the following data;

	Years	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	Valves	102	108	130	140	1158	180	196	210	220	230
. 1	1.1.1										

Solution:

Years	Values	3-years moving total	3- years moving average
2001	102	-	-
2002	108	340	340/3=113.33

Chapter 6

2003	130	378	378/3=126.00
2004	140	428	428/3=142.67
2005	158	478	$\frac{478}{3} = 159.33$
2006	180	534	534/3=178.00
2007	196	586	586/3=195.33
2008	210	626	626/3=208.67
2009	220	660	660/3=220.00
2010	230	-	

13. Determine graphically for the following data and check your answer by using formulae.

Median and Quartiles using cumulative frequency polygon. i.

ii. Mode using Hist	ogram
---------------------	-------

Class Boundaries	Frequency	
10 - 20	2	
20 - 30	5	
30 - 40	9	
40 - 50	6	
50 - 60	4	
60 - 70	1	

Solution:

Frequency	<i>c</i> . <i>f</i>
2	2
5	7
9	16
6	22
4	26
1	27
	Frequency 2 5 9 6 4 1

Median Class Q₃Clas

Median Class = $\left(\frac{n}{2}\right)^{th}$ observation = $\left(\frac{27}{2}\right)^{th}$ = $(13.5)^{th}$ observation. 253

Median = $l + \frac{h}{f} \left(\frac{n}{2} - c\right)$

Here l = 30, h = 10, f = 9, n = 2.7.c = 7

Thus median $x = 30 + \frac{10}{9} \left(\frac{27}{2} - 7 \right) = 30 + \frac{10}{9} \left(\frac{13}{2} \right) = 30 + 7.22 = 37.22$

- What do you understand by Dispersion? Dispersion means the spread or scatter ness of observations in a data set. By dispersion means the extent to which observations in a sample or n a population are spread out. The main measure of dispersion are range, variance and standard deviation's.
- How do you define measure of dispersion?
 The measure that are used to determine the degree or extent of variation in a data set are called measure of dispersion.
- **3.** Define Range, Standard deviation and Variance.

Solution:

ii. Range:

Range measure the extent of variation between two extreme observations of a data set. It is given by the formula:

 $X_{max} - X_{min} = X_m - X_o$

Where $X_{max} = X_m = the maximum$, highest or largest observation.

 $X_{min} = X_o =$ the minimum lowest or smallest observation.

The formula to find range for grouped continuous data us given below.

Range = $(Upper \ class \ boundary \ of \ last \ group) - (Lower \ class \ boundary \ of \ first \ group).$

iii. Variance:

Variance is defined as the mean of the squared deviation of x_i (i = 1, 2, 3, ..., n) observation from their arithmetic mean. In symbols,

Variance of
$$X = Var(X) = S^2 = \frac{\sum (X - X)^2}{n}$$

iv. Standard Deviation

Chapter 6

Standard deviation is defined as the positive square root of mean of the squared deviations of X_i (i = 1, 2, 3, ..., n) observations from their arithmetic mean. In symbols we write

standard Devaition of
$$X = S.D(X) = S = \sqrt{\frac{\sum (X - \bar{X})^2}{n}}$$

Computations of Variance and Standard Devotions

We uses the following to compute Variance and standard Deviations for Ungrouped and Grouped Data. Ungrouped Data:

The formula of Variance is given by

$$Var(X) = S^{2} = \frac{\sum X^{2}}{n} - \left(\frac{\sum X}{n}\right)^{2}$$

And standard Deviation

$$S.D(X) = S = \sqrt{\left[\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2\right]}$$

4. The salaries of five teachers in Rupees are as follows.

11500,12400,15000,14500,14800.

find Range and Standard devitions

Solution:

X = 11500, 12400, 15000, 14500, 14800.

Here $X_{min} = 11500$, $X_{max} = 15000$

$$Range = X_{max} - X_{min}$$

= 15000 - 11500
= 3500
 $\bar{X} = \frac{\sum x}{n}$
= $\frac{11500 + 12400 + 15000 + 14500 + 14800}{5}$

$$= \frac{68200}{5} = 13640$$

$$\boxed{X} \qquad X - \overline{X} \qquad (X - \overline{X})^2$$

$$\boxed{11500} \qquad -2140 \qquad 4579600$$

$$\boxed{12400} \qquad -1240 \qquad 1537600$$

$$\boxed{15000} \qquad 1360 \qquad 1849600$$

$$\boxed{14500} \qquad 860 \qquad 739600$$

$$\boxed{14800} \qquad 1160 \qquad 1345600$$

$$\sum (X - \bar{X})^2 = 10052000, \quad n = 5$$

S. $D(X) = S = \sqrt{\left[\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2\right]}$
 $= \sqrt{\frac{10052000}{5}}$
 $= \sqrt{2010400}$
 $= 1417.88$

5. (a) Find the standard deviation "*S*" of each set of numbers:

i. 12,6,7,3,15,10,18,5

ii. 9,3,8,8,9,8,9,18.

(b) Calculate variance for the data 10,8,9,7,5,12,8,6,8,2

5

12

8

Chapter 6

-2.5

4.5

0.5

.25		
	17 Page	е

6.25

20.25

Chapter 6

6				-1.5		2.25	
8			0.5		.25		
	2			-5.5		30.25	
		_	= 75 $\sum_{\overline{X} = \frac{\sum X}{n} = \frac{\sum X}{n}}$	$=\frac{75}{10}=7.5$ $r(X) = S^2 = \frac{2}{7}$			
		_		= 6.85			
						$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Length		20 - 22		23 - 25 26 - 28		32 - 34	
frequent Solution:	су	3	6	12	9	2	
<i>C.I</i>	f	Mid points (r)	fx	v v	$(V \overline{V})^2$	$f(X-\overline{X})^2$	
20 - 22) 3	Mid points(x) 21	63	$X - \overline{X}$ -6	$\frac{(X-\bar{X})^2}{36}$	$\frac{\int (X - X)^2}{108}$	
20 - 22 23 - 25	6	21	144	-0	9	54	
26 - 28	12	27	324	0	0	0	
29 - 31	9	30	270	3	9	81	
32 - 34	2	33	66	6	36	72	
total	32		$\sum fx = 867$	-	90	315	
$\overline{X} = \frac{\sum fx}{n} = \frac{8}{3}$	$\frac{67}{32} = 2^{10}$	7.093 = 27 approx	$\overline{X} = \frac{\sum X}{n} =$		Y		
					/9.84375 = 3 . 313 '	7	
7. For t	he follo	owing distribution of	marks calculator F	Range	Fraguana	/No	
	22 40			Frequency/No. 28			
	<u>33 - 40</u> 41 - 50					31	
	51 - 60						
	61 - 70			9			
	71 - 75			5			
Solu	tion:			I			
		С. І	Clas	s Boundaries	oundaries f		
	33 - 40			32.5 - 40.5		28	
	41 - 50			40.5 - 50.5 32		32	
51 - 60			5	50.5 - 60.5		12	
	61 - 70			60.5 - 70.5 9			
	71 – 75			70.5 — 75.5		5	
Here			X _r Range	$x_{max} = 75.5$ $x_{min} = 32.5$ $x_{max} - X_m$ $x_{max} - 32.5 = 43$			